
119

A Multi-National Study of Reading and
Tracing Skills in Novice Programmers

Raymond Lister

Faculty of Information Technology
University of Technology, Sydney
Broadway, NSW 2007, Australia

+61 2 9514 1850
raymond@it.uts.edu.au

Elizabeth S. Adams
Department of Computer Science

James Madison University
Harrisonburg, VA 22807, USA

+1 (540) 568 1667
adamses@jmu.edu

Sue Fitzgerald
Information and Computer Sciences

Metropolitan State University
St. Paul, MN 55106 USA

+1 (651) 793-1473
sue.fitzgerald@metrostate.edu

William Fone
Staffordshire University

Stafford, ST18 0DG
United Kingdom

+44-1785-353304
W.Fone@Staffs.ac.uk

John Hamer
Department of Computer Science

University of Auckland
Auckland, New Zealand

+64 9 3737 599
j.hamer@cs.auckland.ac.nz

Morten Lindholm
Department of Computer Science

Aarhus University
Aarhus, DK-8200, Denmark

+45 8942 5621
lindholm@daimi.au.dk

Robert McCartney
Dept Comp. Sci. and Engineering

University of Connecticut
Storrs, CT 06268 USA

+1 (860) 486-5232
robert@cse.uconn.edu

Jan Erik Moström
Department of Computing Science

Umeå University
905 86 Umeå, Sweden

+46 90 147 289
jem@cs.umu.se

Kate Sanders
Math/CS Department
Rhode Island College

Providence, RI 02908 USA
+1 (401) 456-9634
ksanders@ric.edu

Otto Seppälä
Laboratory of Info. Processing Science

Helsinki University of Technology
PL 5400, 02015 TKK, Finland

+358 (9)451 5193
oseppala@cs.hut.fi

Beth Simon
Dept of Maths and Computer Science

University of San Diego
San Diego, CA 92110

+1 (619) 260-7929
bsimon@sandiego.edu

Lynda Thomas
Department of Computer Science

University of Wales
Aberystwyth

+44 (1970) 622452
ltt@aber.ac.uk

ABSTRACT
A study by a ITiCSE 2001 working group ("the McCracken Group") established that many students do not know how to
program at the conclusion of their introductory courses. A popular explanation for this incapacity is that the students lack the
ability to problem-solve. That is, they lack the ability to take a problem description, decompose it into sub-problems and
implement them, then assemble the pieces into a complete solution. An alternative explanation is that many students have a
fragile grasp of both basic programming principles and the ability to systematically carry out routine programming tasks,
such as tracing (or “desk checking”) through code. This ITiCSE 2004 working group studied the alternative explanation, by
testing students from seven countries, in two ways. First, students were tested on their ability to predict the outcome of
executing a short piece of code. Second, students were tested on their ability, when given the desired function of short piece
of near-complete code, to select the correct completion of the code from a small set of possibilities. Many students were
weak at these tasks, especially the latter task, suggesting that such students have a fragile grasp of skills that are a pre-
requisite for problem-solving.

120

1. INTRODUCTION
Despite the best efforts of teachers in our discipline, many
students are still challenged by programming. A 2001
ITiCSE working group (the “McCracken group”)
assessed the programming ability of a large population of
students from several universities, in the United States
and other countries [McCracken, 2001]. The authors
tested students on a common set of programming
problems. The majority of students performed much more
poorly than expected. In fact, most students did not even
get close to finishing the set task. The results are
compelling, given the multi-national nature of the
collaboration. Whereas a similar report from an author at
a single institution might be dismissed as a consequence
of poor teaching at that institution, it is difficult to dismiss
a multinational study.

While the work of the McCracken group has highlighted
the extent of the problem, the nature of the McCracken
study does not isolate the causes of the problem. A
popular explanation for the poor performance of students
is that they lack the ability to problem-solve. The
McCracken group defined problem-solving as a five step
process: (1) Abstract the problem from its description, (2)
Generate sub-problems, (3) Transform sub-problems into
sub-solutions, (4) Re-compose, and (5) Evaluate and
iterate. However, there are other potential explanations
for why students struggle to program. For example,
students may simply not understand the programming
constructs they need to produce a program (e.g. arrays or
recursion). Another and more subtle explanation is that
the student’s knowledge is “fragile”. That is, while a
student may be able to articulate particular items of
knowledge when explicitly prompted for any of them,
when that student is asked to apply that knowledge in a
program writing context, the student “sort of knows, has
some fragments, can make some moves, has a notion,
without being able to marshal enough knowledge with
sufficient precision to carry a problem through to a clean
solution” [Perkins and Martin, 1986, p. 214]. In this
paper, we use the term “fragile knowledge” to also
include basic skills, such as the ability to systematically,
manually execute (“trace”) a piece of code.

As Perkins and Martin point out, general problem solving
and knowledge are not “two independent dimensions of
programming” [p. 226]. Nor is the comprehensive
acquisition of programming knowledge and skills an
absolute precursor to manifesting the ability to problem-
solve. However, some minimal grasp of programming
concepts and associated skills is required before a student
can manifest problem-solving skills in the strong five-step
sense as defined by the McCracken group. These
considerations led us to ask the following question: to
what degree did students perform poorly in the

McCracken study because of poor problem solving skills,
or because of fragile knowledge and skills that are a
precursor to problem-solving?

This paper is the report of an ITiCSE 2004 working
group, which explored the above question by asking
students to demonstrate their comprehension of existing
code. If a student can consistently demonstrate an
understanding of existing code, but struggles to write
similar programs, then it may be reasonable to conclude
that the student lacks the skills for problem-solving.
However, if a student cannot consistently demonstrate
understanding of existing code, then such a student’s
difficulty is a lack of knowledge and skills that are a
prerequisite for non-trivial, five-step, problem-solving.
The data for this working group was collected by asking
students to answer twelve Multiple Choice Questions
(MCQs). The complete set of MCQs is given in appendix
A. In that appendix, the programming code is given in
Java. However, the questions are intended to test student
knowledge and skills for generic, iterative processes on
arrays, and therefore can be easily translated into many
programming languages. Within the working group, one
participating institution translated the MCQs into another
programming language, which was C++.

In this study, we used MCQs as the vehicle for studying
the students for two reasons. First, since this is a multi-
institutional study, we wanted a way of scoring student
performance on the MCQs that did not require subjective
judgment on the part of each working group member.
Second, we were concerned that if students were instead
required to explain the function of a piece of code, poor
performance might be due to a lack of eloquence, not a
lack of understanding of the code (especially where the
student was being interviewed in a language other than
their first language).

2. DATA COLLECTION
While answering the 12 MCQs, students provided three
types of data, described in the next three subsections.

2.1 Performance Data
The purpose of collecting this data was to gauge the
difficulty of the MCQs across all participating
institutions.

Each working group member tested students on the
twelve MCQs, under exam conditions. The primary data
collected was the students’ answer for each MCQ, from
which a score out of 12 could be calculated. A total of
941 students contributed data to this part of the study, but
of those students only 556 students were given all twelve
questions.

121

Most students who undertook this performance test had
either recently completed, or had nearly completed, their
first semester of studying programming. However, at
several institutions, many students were not in the first
semester of their studies, or even their first year.

In some institutions, the MCQs were used as part of the
procedure for assigning a final grade to the students. In
other institutions, students volunteered to be part of the
study.

2.2 Interview Transcripts
The purpose of collecting this data was to investigate how
students went about answering the MCQs.

Each of the twelve working group members interviewed
at least three students. A total of 37 students were
interviewed. In the interview, students were asked to
“think out loud” as they answered the core set of MCQs.
The interviews were recorded and then transcribed. Some
students were interviewed in a language other than
English. In such cases, the final version of the
transcription was a translation of the interview into
English.

In institutions where the twelve MCQs were used as part
of the grading process, the interviews were conducted
after the students sat for the test. In such cases, the
interview was a debrief, as students recollected how they
answered each question. In other interviews, where the
MCQs were not part of the grading process, students saw
the questions for the first time at the interview. Their
choice of answer for each MCQ was also included in the
performance data discussed in section 2.1.

Of the interviewees, the median age was 20 years,
ranging from 18 to 54 years. Ten percent were female.
The average number of years at their respective
institutions was 1.4 with a standard deviation of 0.9. Most
students were in their first programming course. The Java
students had been studying programming for an average
of 0.45 years, C++ students an average of 0.3 years.

2.3 Doodle Data
The purpose of collecting this data was to investigate how
students went about answering the MCQs.

Students were given “scratch” paper upon which they
were allowed to draw pictures or perform calculations as
part of answering the MCQs. Within the working group,
such drawings and calculations are referred to as
“doodles”. Usually, a student was allowed to doodle on
the same page upon which the MCQ was given to the
student.

Doodles were collected from all 37 students who were
interviewed. At some institutions, doodles were also
collected from students who supplied performance data.

3. PERFORMANCE DATA ANALYSIS
This section contains a statistical analysis of the
performance data, without any detailed reference to the
transcript or doodle data.

Figure 3.1 shows a histogram of scores (out of 12) of the
556 students who were given all twelve questions. The
scores cover the complete range, from 0 to 12, with a
mode of 8. Table 3.1 shows the quartile boundaries for
these students. These quartile boundaries are used
extensively in this section’s analysis of the performance
data.

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Score on all twelve MCQs

N
um

be
r o

f s
tu

de
nt

s

Figure 3.1. Distribution of scores for students who were
given all 12 MCQs (N=556).

Quartile Score
Range

No. of
Students

Percent of
Students

1st “top” 10 - 12 152 27%
2nd 8 - 9 135 24%
3rd 5 - 7 142 25%
4th “bottom” 0 - 4 127 23%

Table 3.1. The quartile boundaries for students who were
given all 12 MCQs (N=556).

Quartile Score
Range

No. of
Students

Percent of
Students

1st “top” 10 - 12 46 20%
2nd 8 - 9 56 25%
3rd 5 - 7 60 26%
4th “bottom” 0 - 4 66 29%

Table 3.2. The quartile boundaries for students who were
given all 12 MCQs, from all but one institution (N=228).

122

A single institution contributed over half the performance
data summarized in Table 3.1. (The next largest
contribution by a single institution was 11%. Six
institutions contributed data for all 12 MCQs from at least
20 students.) There is therefore the possibility that the
quartile boundaries in Table 3.1 are influenced unduly by
the students of the institution that contributed over half
the performance data. Table 3.2 shows a breakdown of
student numbers, by the quartile boundaries established in
Table 3.1, but excluding students from the institution that
contributed the majority of the performance data. Table
3.2 shows that the percentage of students from all other
institutions in the top quartile is lower (20% compared
with 27% in Table 3.1) and the percentage of students in
the bottom quartile is higher (29% compared with 23% in
Table 3.1). The percentage of students in the middle two
quartiles is nearly the same. On the basis of this
comparison, and for the purposes of this study, we
conclude that the student performance statistics are
influenced but not dominated by that single institution. To
the extent that the performance statistics are influenced by
that single institution, the effect is to increase the scores
of students in the total population.

The above performance statistics are not as strikingly bad
as the performance figures in the McCracken study,
where over half the students did very poorly. We
expected the distribution of performance in our study to
be better than the distribution in the McCracken study,
given our assumption that the ability to read and
understand small pieces of code is a prerequisite skill for
five-step problem solving. However, it is difficult to
ascertain what is a “good” score on the 12 MCQs without
first studying those MCQs. For that reason, the next two
subsections each examine a specific MCQ. A similar
analysis of the remaining ten MCQs is given in appendix
B. Subsequent subsections examine statistical data across
all twelve MCQs.

3.1 Question 2: A Mid-Range MCQ
Figure 3.2 contains an MCQ, Question 2 from the
complete set of 12 MCQs. It was answered correctly by
65% of all students who attempted it, and is a question of
mid-range difficulty in the set of 12 MCQs.

At first glance, Question 2 might appear to count the
number of common elements in both arrays, which is 3
(choice A). However, on closer inspection of the code, it
can be seen that the elements at position 0 in the arrays
are not counted, so the correct answer is 2 (choice B).
Ignoring the first element of an array is not idiomatic –
it’s not what many programmers might expect – but it
may be correct. For example, the first element of an array
in C or C++ is sometimes used to store the length of the
array, rather than an element of the array. Also, many
bugs are caused by the fact that the code we write does

not always do what we intended it to do, so the ability to
read what the code actually does, rather than what we
think it should do, is an important programming skill.
Irrespective of whether Question 2 is a piece of code that
a teacher should show their class, it is certainly a piece of
code that a student might write and need to debug.

MCQs are a common way of testing students in many
disciplines, and there is considerable body of literature
devoted to the construction and analysis of such tests
[Ebel & Frisbie, 1986; Linn & Gronlund, 1995;
Haladyna, 1999]. A common way of analyzing the
effectiveness of a MCQ is based upon the notion that
MCQs should be answered correctly by most strong
students, and incorrectly by most weak students. For
Question 2, approximately 90% of students in the first
quartile (i.e. students who scored 10-12 on all 12 MCQs)
answered this question correctly, whereas approximately
30% of students in the bottom quartile (i.e. scored 0-4 on
all 12 MCQs) answered this question correctly. (Note that
a student who understands nothing about the question,
and simply guesses, stands a 25% chance of guessing
correctly, while a student who can eliminate one option
stands a 33% chance of guessing correctly.) On the basis
of these two percentages for the top and bottom quartiles,
this MCQ does distinguish between stronger and weaker
students.

A similar but more comprehensive quartile analysis of
Question 2 is given in Figure 3.3. This type of figure is an
established way of analyzing MCQs [Haladyna, 1999]. It
shows the performance of all four student quartiles, and
also summarizes the actual choices made by students in
each quartile. The horizontal axis represents the four
student quartiles. The uppermost trend line in that figure
represents choice B, the correct choice for Question 2. As
stated earlier, approximately 90% of students in the first
quartile chose option B. The percentage of students who
chose option B drops in the second quartile, but it remains
by far the most popular choice among second quartile
students. For third quartile students, just over half chose
option B, but approximately 30% of third quartile
students chose option A. On those figures, it would
appear that most third quartile students grasped the basic
function of the code in Question 2, although 30% missed
the non-idiomatic detail that the elements in position zero
of the arrays were not counted. Among fourth quartile
students, the correct choice was less popular than option
A, and many students chose options C or D.

Question 2 is not especially difficult. The first quartile
students did very well on this question and even the
second and third quartiles had a strong preference for the
correct answer to the question. However it is an effective
question for distinguishing between most students and the
particularly weak students (i.e. fourth quartile). On the

123

basis of this question, it would seem that most students in
the top three quartiles have a reasonable grasp of the
concepts tested by this question (primarily arrays and
iteration).

One of the most challenging aspects of writing a multiple-
choice test is writing the distracters (i.e. the incorrect
options). A good distracter should be plausible enough to
appeal to some students. It should be clearly incorrect,
however, so that it does not mislead those students who
really know the material. In practice, it is difficult to write
three good distracters. Figure 3.3 shows that distracter A
was the most effective, whereas distracter D was not
effective for the top three quartiles.

To summarize the above discussion, Figure 3.3 illustrates
two visual properties that are usually regarded as
desirable in most such graphs of an MCQ [Haladyna,
1999], particularly where students are being norm-
referenced (i.e. graded according to a desired distribution
of grades). Those two properties are:

1) The trend line for the correct answer is
monotonically decreasing from left to right (i.e.
from the strongest to weakest students).

2) The trend line for each distracter is
monotonically increasing from left to right.

It is less clear, however, that MCQs should consistently
exhibit these properties when students are being criterion-
referenced (i.e. tested for their mastery of certain
knowledge and skills), which is the object of this research
project. The next subsection discusses a harder MCQ
from the set of 12, which does not exhibit all the above
“desirable” norm-referencing properties.

Question 2

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s

A
B
C
D

Figure 3.3. Student responses to Question 2, by quartiles.

Question 2.
Consider the following code fragment.

int[] x1 = {1, 2, 4, 7};
 int[] x2 = {1, 2, 5, 7};
 int i1 = x1.length-1;
 int i2 = x2.length-1;
 int count = 0;

 while ((i1 > 0) && (i2 > 0))
 {
 if (x1[i1] == x2[i2])
 {
 ++count;
 --i1;
 --i2;
 }
 else if (x1[i1] < x2[i2])
 {
 --i2;
 }
 else
 { // x1[i1] > x2[i2]
 --i1;
 }
 }

After the above while loop finishes, “count” contains
what value?
a) 3
b) 2
c) 1
d) 0

Figure 3.2. Question 2 from the set of 12 MCQs

124

Question 8

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s

A
B
C
D

Figure 3.5. Student responses to Question 8, by quartiles.

3.2 Question 8: A Harder MCQ
Figure 3.4 contains Question 8 from the complete set of
12 MCQs. It was answered correctly by 51% of all
students who attempted it, the third lowest percentage for
all 12 MCQs. The four choices given to the students focus
on two points of the inner loop:

1) Should the inner loop start processing at position 0 or
at position i+1?

2) Should the inner loop continue processing while
j<x.length or while j<x.length-1?

All four possible combinations of the above two options
are given as choices, respectively:

a) This option is wrong on the first of the above two
points, but it is the most idiomatic of the four choices.
That is, it is a loop where the control variable “j”
would sweep across the entire array, which is likely to
be the first and most common iterative process on an
array seen by these novice programmers.

b) This option is wrong on both of the above two points,
but it is the option most similar to the outer loop.

c) The correct answer.

d) This option is wrong on the second of the above two
points, but it does have a test condition similar to the
test condition of the outer loop.

A quartile analysis of Question 8 is given in Figure 3.5.
Approximately 80% of students in the first quartile chose
the correct answer, option C. That option was the most
popular with second quartile students, but distracter D
was almost as popular, with the incorrect loop termination
condition j<x.length-1. Distracter D was in fact the
most popular choice for third quartile students. Distracter
D was the second most popular option with fourth
quartile students; both it and the more popular distracter
contain the incorrect loop termination condition
j<x.length-1. In summary, the most popular

Question 8.
If any two numbers in an array of integers, not
necessarily consecutive numbers in the array, are out
of order (i.e. the number that occurs first in the array
is larger than the number that occurs second), then
that is called an inversion. For example, consider an
array “x” that contains the following six numbers:

4 5 6 2 1 3

There are 10 inversions in that array, as:

x[0]=4 > x[3]=2
x[0]=4 > x[4]=1
x[0]=4 > x[5]=3
x[1]=5 > x[3]=2
x[1]=5 > x[4]=1
x[1]=5 > x[5]=3
x[2]=6 > x[3]=2
x[2]=6 > x[4]=1
x[2]=6 > x[5]=3
x[3]=2 > x[4]=1

The skeleton code below is intended to count the
number of inversions in an array “x”:

int inversionCount = 0;

for (int i=0 ; i<x.length-1 ; i++)
{

for xxxxxx
{

if (x[i] > x[j])
++inversionCount;

 }
}

When the above code finishes, the variable
“inversionCount” is intended to contain the number of
inversions in array “x”. Therefore, the “xxxxxx” in
the above code should be replaced by:

a) (int j=0 ; j<x.length ; j++)
b) (int j=0 ; j<x.length-1; j++)
c) (int j=i+1; j<x.length ; j++)
d) (int j=i+1; j<x.length-1; j++)

Figure 3.4. Question 8 from the set of 12 MCQs

125

distracter choice across all quartiles contained the
incorrect loop termination condition.

An examination of transcripts indicates that students who
thought that j<x.length-1 was correct understood
that the “j” subscript needed to go all the way to the end
of the array, and they recognized that the last position of
the array was x.length-1, but they neglected the
effect of the “<” symbol, effectively selecting their
answer as if that symbol was “<=” instead. A large
number of students made this mistake, which is surprising
since the very next question in the set of 12 MCQs
requires students to select another loop test condition, and
students performed much better on that question, with
73% of students answering it correctly. It may be that the
students were primed to select the incorrect test condition
in Question 8 because of the presence, in this same
question, of the test condition “i<x.length-1” for the
outer loop. In one interview transcript, a second quartile
student explicitly acknowledged that as the reason for the
choice: “Yeah, I chose this one because it would be the
same ….”. If this conjecture is correct – that students
were distracted by the presence on the same page of
another loop condition - then it highlights the fragility of
the knowledge of many novice programmers.

3.3 Aggregate Performance on MCQs
Table 3.3 shows the percentage of students who answered
each of the 12 MCQs correctly. The “Rank” column
shows relative difficulty of each question, as defined by
the percentage of students who answered the question
correctly. Questions 2 and 8, which were studied in detail
above, are ranked 6th most difficult and 3rd most difficult
respectively.

(At some institutions, some students were not given all 12
MCQs. In general, those students cannot be included the
data analysis of this paper, as much of the data analysis
depends upon classifying each student into a quartile,
based upon their performance on all 12 MCQs. However,
in Table 3.3, such students were included.)

Question 6 was ranked as the second most difficult
question. A detailed analysis of that question is in
Appendix B. This question involves the use of a “return”
from within a “for” loop. From the transcripts, it is
apparent that many students do not understand that the
“return” will terminate the loop immediately. This
misconception is consistent across institutions and
countries.

Ignoring question 6, because it involves a conceptual
misunderstanding by students, the questions ranked
hardest in Table 3.3 are Questions 8, 11, and 12. A
common characteristic to these three questions is that they
are all “skeleton-code questions.” That is, these questions
require the student to select the correct code to complete

given “skeleton” code. As a general rule, the easier
MCQs are “fixed-code questions”. That is, the easier
questions require the student to hand execute some code
and select the outcome. Question 2 is such a fixed-code
question. The exception to this general rule is Question 9,
which is a skeleton code question, but which is ranked
second easiest in Table 3.3.

MCQ %correc
t

Rank No. Students

1 68 8/9 644
2 65 6 644
3 67 7 611
4 62 5 611
5 74 (easiest) 12 611
6 42 2 611
7 72 10 798
8 51 3 798
9 73 11 798

10 68 8/9 644
11 59 4 611
12 38 (hardest) 1 611

Table 3.3. Percentage of students who answered each of
the 12 MCQs correctly.

Finally, we note that it is possible that Question 12
proved difficult simply because it was the final question.
Students may have been tiring by that stage. Students for
whom this test was a significant determinant of their final
grade may have had the motivation to overcome such
tiredness. However, students for whom the test counted
for little or nothing would have had low motivation to
overcome tiredness.

3.4 Relative Performance Across Institutions
At the heart of any multi-institutional study is the
assumption that data collected at different institutions can
be compared in some meaningful way. Inevitably,
however, there will be differences between the
institutions, both in the nature of the institutions and
details of how the data is collected. In this study,
differences included:
1) Student ability. Clearly, some institutions attract

students with a greater innate talent for programming.
2) Student experience. Most students who provided

performance data were at or near the end of their first
semester of programming, but the total population of

126

students ranged from the middle of the first semester
to the end of the third semester.

3) Student motivation: At some institutions this test had
an impact on course grades, to varying degrees; at
others, participating students were volunteers.

4) Programming language: In one institution, the Java
code in the MCQs was translated into C++.

5) Modality of test: At one site the test was taken on a
computer, at the others it was taken on paper.

6) Formatting of exam: Some researchers reformatted the
questions to match the indenting style used in their
classes. Also, one researcher prepared multiple
versions of the questions, with the options of each
MCQ reordered, to deter copying.

Figure 3.6 displays the variation in student performance
across institutions, but also shows some general trends
common to institutions. This figure effectively breaks
down the information supplied in Table 3.3 according to
institution, showing the percentage of students who
answered each question correctly. However, Figure 3.6
only shows a subset of the data from Table 3.3, the subset
comprising the 6 institutions that provided performance
data for at least 20 students, where all those students were
given the full 12 MCQs. Figure 3.6 highlights that, on any
given question, the percentage performance varied
considerably between institutions. However, some clear
trends across questions are common to most of the
institutions. For example, questions 6, 8, and 12 stand out
as being difficult questions at most of the institutions.
One of the institutions in Figure 3.6 runs contrary to the
general trend of most other institutions shown on that
figure. This is the institution with a particularly low
percentage on question 4. Students from this same
institution performed relatively well on harder questions,
8, 11 and 12. There are three possible contributing factors
to the unusual performance of this institution. First, this
institution contributed data from 20 students, the
minimum for inclusion in that figure. Therefore data from
that institution is more prone to variation due to small
sample size. Second, those students were in their first
semester of Java programming, and were taught Java
“objects early”, which may have not prepared them well
for questions about iterative processes on arrays. Third,
inspection of transcripts for this institution reveals that
these students had studied, or were studying in parallel,
algorithms in a language independent context, and they
recognized some of the latter MCQs as being very similar
to algorithms they had studied. If we ignore that
institution in Figure 3.6, trends are even more apparent
across institutions.
As explained in an earlier section, one institution
contributed more than half of the performance data for

students given all 12 MCQs. In Figure 3.6, that institution
is represented by diamonds, and follows the same trends
as most of the other institutions.
On the basis of the analysis in this sub-section, as
illustrated in Figure 3.6, we conclude that there are trends
in the data across institutions. In general, a question that
is substantially more difficult for students at one
institution is also more difficult for students at other
institutions.

3.5 Performance Across Quartiles
Table 3.4 shows the percentage of students with the
correct answer for each question, broken down by
performance quartile. The rightmost column of that table
shows the average percentage performance across all
questions for each quartile. In other columns, those
numbers in bold and underlined are the percentages
below the average for that quartile. As with earlier data
analysis, questions 6, 8, and 12 stand out as being
particularly difficult questions; here we see that they are
relatively difficult for students in all performance
quartiles.
Question 11 is interesting in that the middle two quartiles
performed below their respective averages on this
question. However, the difference in performance on this
specific question and the overall average performance is
no more than 4% for all four quartiles, so the relatively
poor performance of the middle two quartiles needs to be
treated with caution.

3.6 Familiarity with MCQ Exams
Most institutions do not grade programming students by
MCQs. The most common grading practices are to ask
students to write code, or explain in words what a piece
of code does. The question therefore arises as to whether
the students who participated in this study were not well
prepared for the task required of them.
The MCQs used in this study were provided by one
participating institution, where students at the end of their
first semester of programming pass or fail that
programming course on the basis of a MCQ exam. In the
remainder of this subsection, we shall refer to this
institution as the “base” institution, and all other
institutions as the “satellite” institutions. Students at the
base institution are routinely given a pool of practice
MCQs several weeks prior to the grading exam. These
students are therefore well prepared (and highly
motivated) to do well on the type of MCQs used in this
study. The performance of students on the 12 MCQs at
the base institution are in Table 3.5. The remainder of this
section compares the data in that table with the data from
satellite institutions.

127

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12

Question

%
 c

or
re

ct

Figure 3.6. Percentage of students with the correct answer for each question, for the 6 institutions that provided

performance data for at least 20 students, where those students were given all 12 MCQs. Each trend line corresponds to one
institution.

 question
quartile

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Average,
all

questions

Top (10-12) 93 87 99 90 99 74 95 81 98 93 89 73 89
Second (8-9) 79 76 81 73 93 50 82 47 86 81 67 31 70
Third (5-7) 50 56 62 52 72 28 61 30 67 65 46 18 50
Bottom (0-4) 35 28 25 25 21 14 31 20 32 21 27 13 24

All quartiles 65 63 68 61 73 43 69 46 72 67 58 35 60

Table 3.4. Percentage of students with correct answer for each question, by performance quartile.

Question No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Percentage 84 79 55 69 80 42 78 63 76 80 69 67

Table 3.5. Percentage of students with correct answer for each question, at the “base” institution where the MCQs were
written. Percentages in bold and underlined are outside the range of percentages across the other institutions in Figure 3.6.

In Table 3.5, the four percentages in bold and underlined
are outside the range of percentage figures across the
satellite institutions in Figure 3.6. In all four cases, the
percentage for base students in the table is higher than the
percentages for satellite students in the figure.
Questions 1 and 2 were answered more poorly by satellite
students than by the base students, which may indicate
that satellite students took a couple of questions to

become familiar with what was required of them in this
test.
A striking difference between Tables 3.3 and 3.5 is the
different percentage of students who correctly answered
Question 12. At the base institution, 67% of students
answered that question correctly, compared with only
38% at the satellite institutions. At the base institution, a
minor variation on Questions 12 was part of a pool of

128

practice questions given to the students. Therefore,
students at the base institution could be expected to do
better on this question.
We conclude that unfamiliarity with MCQ exams was not
a major impediment for students at satellite institutions.
We suspect that, had the students at satellite institutions
also had access to an extensive pool of practice questions
prior to attempting these 12 MCQs, then their
performance may have been a little higher, but not
substantially higher.
 (We end this subsection with the following passing note
of clarification. The base institution provided data for all
12 MCQs from only three students. With the exception of
Table 3.3, data analysis in this paper concerns students
who completed all 12 MCQs. Therefore, the data from the
base institution cannot inject a large bias into the data
analysis.)

3.7 Reliability
There are established methods in the educational
literature for evaluating the “reliability” of a test.
Reliability has a fairly narrow meaning here: a test is
reliable if it would discriminate consistently between
students, based on partitioning the questions, grading the
partitions, and seeing if the results agree. Therefore
reliability tests are based upon the assumption that all
questions in a MCQ exam test the same knowledge and
skills. We computed Cronbach's coefficient alpha (Ebel
and Frisbie, 1986), which provides the average
correlation between scores of all possible two-group
partitions of the questions. Using the data for students
who were given all 12 MCQs (N=556), we obtained a
value of 0.75. By convention, a value of 0.80 or higher is
considered "reliable". In the set of 12 MCQs used in this
study, Questions 6, 8, and 12 (one quarter of the complete
set of questions) stand out as being relatively difficult
questions. Therefore it is not surprising that the reliability
of the complete set of 12 MCQs falls a little below the
conventional threshold of 0.80.

3.8 Time Taken To Do The Twelve MCQs
It is possible that some students performed poorly on
MCQs late in the complete set of 12 because they were
running out of time. The time to be given to students to
complete the exam was not specified as part of the
experiment design, beyond the advice to participating
institutions that students should be given at least an hour
to do all 12 MCQs.
Time-duration data was collected for 339 of the students
who were tested on all 12 MCQs. Most of this time data
came from the institution that contributed the majority of
performance data, where no upper time limit was given to

students. Half the students took between 30 and 60
minutes to answer all 12 questions. That is, 75% of all
students completed the 12 MCQs in under an hour. The
longest time taken by a student in the first performance
quartile (i.e. score of 10-12) was 105 minutes. The
longest time by any student was 115 minutes, by a student
in the third performance quartile (i.e. score 5-7). The
distribution of times to complete the 12 MCQs was
similar across the top three performance quartiles.
Students in the bottom quartile tended to be quicker. Half
of the bottom quartile students took between 20 and 50
minutes to answer all 12 questions, with the longest
taking 65 minutes.

3.9 Performance Data Discussion
Students who fall within the bottom performance quartile,
scoring 0-4 out of 12, probably suffer from problems
more fundamental than an inability to problem-solve.
Students who fall within the top quartile probably have a
strong grasp of the basics of programming. If top quartile
students manifest a subsequent weakness in writing code,
then they probably do suffer from a weakness in problem
solving.
Having categorized the top and bottom quartiles, there
remains the harder task of making observations about the
middle 50% of students, who scored between 5 and 9. It
is sobering to consider the following hypothetical
argument. Suppose the students who participated in this
study were all studying their first semester of
programming at a single institution. Suppose further they
were given these 12 MCQs as their exam, and the
institution regarded a 25% failure rate as the upper limit
of what was acceptable. Then students who scored 5 out
of 12 on these MCQs would be progressing to the second
semester programming course. In the view of the authors,
students scoring 5 out of 12 on these MCQ’s probably do
not have the level of skill and knowledge needed for a
follow on course. The authors leave the readers to decide
their own acceptable passing score on these 12 MCQs,
and to calculate the resultant failure rate for this
hypothetical class.
One observation we make about the middle 50% of
students is that, by virtue of the fact that they answered
some questions correctly, they have demonstrated a
conceptual grasp of loops and arrays. Therefore, the
weakness of these students is not that they do not
understand the language constructs. Their weakness is the
inability to reliably work their way through the long chain
of reasoning required to hand execute code, and/or an
inability to reason reliably at a more abstract level to
select the missing line of code. Based on the performance
data, it is not possible to draw any firm conclusions as to
the exact cause of this weakness. To explore that issue

129

further, the remainder of the paper examines the other
data gathered in this project, the doodle data and the
interview transcripts.

4. DOODLES
When faced with a piece of code to read and understand,
experienced programmers frequently “doodle”. That is,
they draw diagrams and make other annotations as part of
determining the function of the code.
Figure 4.1 shows the actual annotations made by a
student while correctly choosing option “c” (as indicated
by the circle around that option) for Question 1. (Recall
that, as shown in Table 3.3, this question was answered
correctly by 68% of all students, thus ranking it as one of
the easier MCQs used in this study.) Above the first line
of Java code in Figure 4.1, where array “x” is initialized,
the student has annotated the various positions of the
array. In this study, we refer to that as a “position” doodle
(or just “P”). Above the test condition of the “while”
loop, the student has written the values of the variables.
In that test condition, as the variables “sum” and “i”
changed, the updated values were written alongside the
old value. We refer to this as a “number” doodle (”N”).
Above and to the right of the test condition, the student
has written the changing values in several Boolean
expressions, such as “0 < 3” and “2 < 3”. This is an
example of a “trace” doodle (“T’). Under the statement
“sum += x[i];”, the student has written a "computation"
doodle (“C”), “sum = 1 + 4 = 5”. Near the four options,
the student has written “sum = 0” and “i = 0” to record
the value in these two variables; those are further
examples of “N” doodles. At the lower right is a table,
with a header row containing “sum”, “lim”, “i”, and
“len”. As the student hand executed the code, and the
variables listed in the header row of that table changed
value, the new values were entered into the table. This is
an example of the most elaborate type of doodle
identified in this study, the “synchronized trace” (“S”).

4.1 Categorizing Doodles
In this study, we analyzed the doodles of 56 students,
consisting of all 37 students who were interviewed, plus
others chosen at random from all participating
institutions. Two authors of this study jointly went
through the pages collected from these students, and
developed a draft set of doodle categories.
After the two authors had devised the draft categories,
three other authors then separately went through a subset
of the same pages examined by the first two authors, and
counted the frequency of occurrence of each type of
doodle, as defined in the draft categorization. The
frequencies of each of these three authors were compared

to the frequencies obtained by the first two authors. In all
three cases, the discrepancy was approximately 10%.
Some of the discrepancies were caused by an author
simply missing a doodle, while others occurred because
the explanations of the categories were not clear enough.
The explanations were re-written to clarify the categories,
and produce the final draft of doodle categories.
Table 4.1 contains the final draft of doodle categories,
giving all types of doodles identified in this study. Note
that any mark on a question paper is considered a doodle,
other than the indication of the multiple choice option
chosen. Also, note that a single MCQ answered by a
student may have several doodle categories assigned to it,
as would be the case for the question shown in Figure 4.1.

4.2 Doodle Category and Answer Accuracy
An obvious issue to consider is the effectiveness of each
these doodle categories for answering the MCQs. To
investigate that question, we analyzed the doodles of the
56 students on all 12 MCQs, as follows. For each doodle
category, we calculated the percentage of questions
answered correctly using that doodle (as a percentage of
all questions where that doodle category appeared). Those
percentages are given in Table 4.2. The “Data Points”
column in that table indicates the total number of
occurrences of each doodle type. The maximum number
of possible data points for each doodle type is 56 students
× 12 MCQs = 672.
Not surprisingly, Table 4.2 indicates that, if a student
carefully traces through the code (S, T, or O), thus
documenting changes in variables, the likelihood of
getting the correct answer is high. In contrast, not
doodling (B) only leads to the correct answer 50% of the
time. While these statistics will surprise few teachers,
these are very useful statistics for teachers to quote to
their students.
Note that a student may use more than one doodle
category to answer a question. Therefore some categories,
which have little to do with actually determining the
correct answer, may appear in conjunction with another
doodle category that is primarily responsible for
answering the question (e.g. The position doodle by itself
is unlikely to lead to a correct answer). This may also
explain the 100% success of the Keeping Tally doodle
(K). In any event, the number of data points for the
keeping tally doodle is too low to be considered
significant.

130

Figure 4.1 A student’s doodles for Question 1

131

Code Name Description Examples

A Alternate Answer Student changed their answer to this question c.
d.

B Blank Page No doodles for this question
C Computation An arithmetic or Boolean computation. Rewriting a comparison

was not counted as a computation (see N).
3 + 5

3==5 false

E Extraneous Marks Markings that appear meaningless or are ambiguous (i.e. could not
be definitively characterized by researcher). Includes such things
as: circled array elements; meaningless arrows; dots on the page,
miscellaneous crossed out numbers, etc.)
Does not include a crossed out copy of a trace (an obvious re-do
of the trace)

. - |

K Keeping Tally Some value being counted multiple times (specific variable not
indicated)

|||||
|||||

N Number Shows value of a variable. Most frequently in a comparison.
Distinct from S or T below. Values characterized as numbers were
associated with variables whose values didn’t change in the code
fragment.

 0 5
 sum<limit

- or -
x.length 6

O Odd Trace Odd kind of trace (i.e. used arrows, couldn’t be characterized as
either S or T below) but appeared to be a trace. Consistent with
the example given here, these doodles may be pictorial
representations of arrays, “before” and “after” operations on the
array.

 0 1 2
 / /
 1 2

P Position Picture of correspondence between position (index) of array
element and value of element
Note: in example, top row is indices, bottom row is printed array
as shown as question paper

 0 1 2 3
x={2 4 6 8}

S Synchronized
Trace

Shows the values of multiple values every time one of them
changes. Essentially a table. In some cases, students also devote
table columns to “variables” that do not change during the
execution of the given code.

 i | sum
 0 | 0
 0 | 3
 1 | 3

T Trace Shows the values of a variable (not necessarily in table form) as it
changes (i.e. shows more than 1 value for at least 1 variable)

- or -
a variable’s value has been overwritten with a new value

i1 = 1 2 3 4
- or -

i1 = 1
i1 = 2

- or -
i1 0 1

U Underlined Some part of the question was either underlined or shaded for
emphasis by student

X Ruled out One or more alternative answers were crossed out so that answer
appeared to be selected by elimination.

Table 4.1. Categorization of Doodles

132

Doodle Category %Correct Data Points
Keeping Tally (K) 100 6
Odd Trace (O) 78 23
Synchronized Trace (S) 77 73
Trace (T) 75 215
Alternate answer (A) 69 26
Position (P) 64 75
Number (N) 70 189
Computation (C) 60 30
X-ruled out (X) 60 60
Extraneous marks (E) 57 89
Underlined (U) 52 44
Blank Page (B) 50 256
Table 4.2: Percentage of correct answers when students
(N=56) use a particular doodle type.

4.3 Blank Page Doodles
One category in Table 4.1 is the “blank page” doodle
(“B”) which, in fact, indicates that there were no doodles
for that question. Given the propensity of experienced
programmers to doodle, it would be reasonable to expect
that novice programmers do likewise, but this is not
always the case. For example, Thomas, Ratcliffe, and
Thomasson (2004) have described their experiences with
encouraging students to doodle. They report that, when a
student approaches an instructor with a problem, the
student is “often impatient when the instructor resorts to
drawing a diagram, then amazed that the approach works”
[p. 250]. They also report that, on one occasion when
they tested students, and they provided each student with
a piece of paper upon which the student was free to
doodle, almost two thirds of the returned pages were
blank.
In this study, of the 56 students for whom doodle data
was examined, one fifth of them did not make any
doodles (B) while answering Question 2, and over half
(55%) did not doodle for Question 8. These relative
doodling rates for Question 2 and 8 appear counter-
intuitive. Unlike the novices in this study, anecdote
suggests that experienced programmers habitually doodle
when trying to understand a difficult piece of code.
Question 2 is easier than Question 8, but the students we
studied are less inclined to doodle for the harder question.
(This issue is addressed further in the discussion of the
Question 8 transcripts.)
Davies (1996) reports that, when writing programs,
experts make extensive use of external records to manage

information, whereas novices rely heavily upon their
short-term working memory. From this working group
study, it would seem that novices also rely heavily on
their short-term working memory when attempting to
trace code.
The actual frequency of blank doodles for Question 2 and
8 is likely to be an underestimate of the general lack of
effective doodling. It would seem unlikely that any
student who merely used the position doodle, and perhaps
some of the other doodle categories, achieved any
advantage in answering Questions 2 and 8. Therefore,
the percentage of students who made no effective doodle
is probably even higher for Questions 2 and 8.
There are three possible explanations why a student could
answer a MCQ with a “B” doodle:
1) The MCQ is relatively simple.
2) The student has internalized a sophisticated reasoning

strategy for answering that type of MCQ.
3) The student is either guessing, or has heuristics for

selecting a plausible answer without genuinely
understanding the MCQ, which is essentially an
educated guess.

Given the high difficulty of Question 8, it seems unlikely
that the first of the above explanations is plausible. An
assessment of the other two explanations requires a closer
look at transcript data, which is done in the next section.

5. TRANSCRIPTS
Having seen the student performance data, and having
seen their doodling patterns, this section throws light
upon that earlier analysis by an examination of the
interview transcripts. Whereas the other sections were
primarily quantitative, this section is primarily qualitative.

5.1 Walkthroughs
In the following examination of the transcripts, there is
frequent reference to “walkthrough”. We use this term to
describe any transcript for a question where the student
hand executes the code in meticulous detail. Figure 5.1
contains a walkthrough for Question 2.
Perkins et. al (1989) refer to walkthroughs as “close
tracking”. They note that, while close tracking is an
important skills for diagnosing bugs, it is mentally
demanding, and therefore many students do not track
their code carefully. Perkins et. al. also note that bugs are
frequently overlooked during tracking because the student
projects their own intentions onto the code.
The transcript analysis in this section was done entirely
separate from the doodle analysis. It seems plausible that

133

a walkthrough in a transcript is evidence for a detailed
style of doodling, but we have not investigated that
connection.

5.2 Higher Level Reasoning
There is an extensive literature on mental models for
programmers, where programs are represented at a level
higher than the code itself. Much of that literature focuses
upon the concept of a schema [Soloway and Ehrlich,
1984; Rist, 1986 & 2004; Detienne, 1990]. Schemas are
an abstract solution to a programming problem, that can
be applied in many situations. Closely related concepts
including “plans”, “templates”, “idioms”, and “patterns”
[Clancy and Linn, 1999].
Much of the literature on schema focuses upon the
writing of programs, but schema are also used in models
of program comprehension. In some models of reading,
comprehension is a “bottom-up” process, where elements
of the text suggest the schema that may have been used
by the author of the program. Some other models are
“top-down”, where schema suggest elements to look for
in the program text. Other models allow a mix of
“bottom-up” and “top-down” processes. Schema models
correctly predict that an expert programmer will
understand/memorize more quickly code that conforms to
a schema than code that does not conform [Soloway,
Adelson, and Ehrlich, 1988].
Some have advocated that students should be taught
schema explicitly [Soloway, 1986; Clancy and Linn,
1999]. Recently, it has been advocated that students be
explicitly taught to recognize and use ten common roles
of variables [Kuittinen and Sajaniemi, 2004].
The study by this working group was designed principally
to benchmark student performance across institutions and
countries. The design of the study does not lend itself to
a detailed analysis of any higher-level comprehension
strategies used by students. The students were merely
asked to find the correct answer to each multiple choice
question, not articulate any higher-level reasoning
process. However, some cautious inferences can be made
from the transcripts. For example, if a student chooses an
answer, without a complete walkthrough, then either the
student has made a guess, or the student has employed
some sort of higher-level reasoning strategy. The
converse, however, is not necessarily true. If a student
employs a thorough walkthrough to find the answer, it
cannot be inferred that the student did not make any
higher-level inference about the code. For example, after
one student had chosen their (incorrect) answer for
Question 2, via a walkthrough, the following exchange
occurred between the interviewer and the student:

Interviewer: “When you are doing that one you're
stepping through the code line-by-line, did you form
an intuitive idea as to what the program is doing?”

Student: “Um, yeah, I knew that it would count the
number of equal elements. I wasn't entirely sure at a
glance what the less-thans and greater-thans would do.”

Even though a detailed analysis of higher-level
comprehension strategies is not possible in this study
design, the transcripts do lend themselves to an
investigation of one important issue: whether higher-
performing students use a qualitatively different approach
to lower-performing students. It could be that all students
are using the same qualitative approach, but the lower
performing students make more errors.

5.3 Guessing
Multiple-choice exams are frequently criticized as being
answerable by guesswork. We looked at the transcripts to
see what evidence there was for guessing. Two forms of
guessing were observed in the transcripts. Students
sometimes made an educated guess. For example, a
student might perform an abortive walkthrough, or some
other process, followed by a statement like “so it must be
A or C – I’m going to guess A”. A guess was deemed to
have occurred when a student made a statement like “I’m
just guessing” or “I’m completely lost, I just picked one”.
In the transcripts, we found evidence for guessing in 10%
of all student answers to questions, with approximately
half of those being educated guesses and half pure
guesses. However, guessing rates per question vary
widely. We detected guessing at levels higher than 10%
in five questions: Question 10 (30%), Question 12 (16%),
Question 8 (15%), Question 6 (13%), and Question 9
(12%). We note that most of these were identified as
difficult questions in the performance analysis. We did
not detect any evidence of guessing for Question 7. As
expected, it was observed that those students who guessed
significantly more than their peers did perform noticeably
more poorly.

134

Figure 5.1 A complete transcript for one student as they

correctly answer Question 2 by a walkthrough.

5.4 Question 2 by Quartile
Recall that Question 2 is a fixed-code question of medium
difficulty. In this subsection, we examine student
transcripts on that question by performance quartile.
Of the thirty seven transcripts, twenty were set aside from
the analysis of Question 2, for the following reasons. In
four cases, there was either no recording or a partial
recording for Question 2, due to errors in the use of
equipment. In two cases, the student responses to all 12
questions had not been recorded in the performance
database, so the students could not be allocated to a
quartile. In seven cases, there was either no clear
articulation in the transcript of the answer chosen by the
student, or there was a mismatch between the apparent
choice of answer in the transcript and the answer recorded
in the database (in at least one case, it is likely that the
student verbalized one choice of answer, but marked
down another choice on their answer sheet). In seven
cases, the student had done the test prior to the interview,
as part of the performance data gathering, and the

interview was a “debrief”. That is, the interview was the
students’ recollection of how they went about answering
the question.

5.4.1 Upper Quartile Students
There were eight transcripts from upper quartile students.
All students answered correctly, and all walked through
the code meticulously. All these students articulated their
walkthrough with sufficient detail so that a reader of the
transcript can follow the reasoning (as in Figure 5.1).
While working out their answer, none of these students
volunteered any realization of the intent of the code, to
count the number of identical elements in the two arrays
(in positions higher than position zero).

5.4.2 Second Quartile Students
There were five transcripts from second quartile students.
Three students answered the question correctly. Two of
those students answered via a meticulous walkthrough
with the same clarity as the upper quartile students. The
third student gave a brief and unclear walkthrough:

“x1 is an array with four integers, x2 is an array with
four integers. i1 equals three and i2 equals three, i1
and i2 are greater than nought so equal three and x1
equals four in this statement and x2 equals five in this
statement. i1 equals 2 and i2 equals 2 still greater
than zero, so x1 will equal two and x2 will equal 2…
therefore the answer will be B.”

Of the two students who answered incorrectly, one chose
option A. This is the option a student would choose if
they grasped the general intent of the code, but did not
realize that the comparison of elements in the arrays stops
without examining the first elements of the arrays. Unlike
the upper quartile students, this student did make explicit
and unprovoked comments about the intent of the code.
Early in his deliberations, the student commented that the
code used “meaningless variable names”. Midway
through deliberations, he comments, “I can see that's
what it’s doing but I do it slowly so I don’t stuff it up”.
Having reached the incorrect decision that the answer is
option A, he volunteers, “I can see that that was going to
happen”, adding that the code “pretty much counts
similar digits in the arrays”. This student demonstrated a
style of reading that we would like to encourage in
students, where the student abstracts from the lower-level
code to a higher-level schema. However, because he did
not check carefully, he missed that the counting stops
without examining the first positions in the arrays.
The remaining student chose distracter C. While the
student appeared to walk through the code, the transcript
is brief and unclear:

This time I'm going to look to see what the question
wants first. So trying to find the value of count. So
now I'm looking to see what each variable is set to
and what's happening inside the program. I'm going
to go ahead and write down that x1's length is 4 and
x2's length is 4. And then e loop, 4 is greater than 0
and 4 is greater than 0. So inside the loop, the,
checking to see if the ... [indecipherable] .. checking,
noticing that I didn't subtract 1 from each of i1 and
i2. So changing i1 to 3 and i2 to 3. So when the 3rd
spot, last spot of each array, they're equal, so it enters
the first if loop so count is now equal to 1; i1 equals 2
and i2 equals 2. Now we're going through the loop
again. 2 is greater than 0 and 2 is greater than 0 so
we're inside the loop. Checking the first "if" are the
second indexes equal to each other? no. So going to
the else if and ‘is 4 less than 5?’, which is true so i2 is
subtracted 1. I2 now equals 1 and we're going back
to the while loop again. 2 is greater than 0 and 1 is
greater than 0. So checking the first if ‘is 4 equal to
2?’, which is false so checking the second if. “Is 4
less than 2?’, which is false so doing the else
statement which is subtract 1 from i1. so i1 now
equals 1. So going through the while loop again. 1 is
greater than 0 and 1 is greater than 0. So checking
the first if "is 2 equal to 2?" which is true so
increment count by 1. Count is now 2. Subtract 1
from i1 which becomes 0 and i2 which becomes 0.
So now the while loop fails because 0 is not greater
than 0. So it asks for the value of count which is 2.

135

“There are 2 variables i1 and i2 that start at 3. Two
arrays x1 and x2. Conditional loop which loops while
they are both greater than zero , compares x1 and x2
the elements at position i1 and i2 which are 3, sees if
they are equal, which they are. It increments count
and decrements i1 and i2, goes through loop again.
And compares the second elements of x1 and x2, but
this time they are different and x1 is less than x2 so
this time it decrements i2 and goes through loop
again. This time compares the second in x1 and
the third in x2 and they aren’t equal and again
decrement i2 – this time it is 0 so false so count was
only incremented once.”

5.4.3 Third Quartile Students
There were two transcripts from third quartile students.
Both students walked through the code, but incorrectly
chose option A.
One of these students failed to manage the walkthrough
well, and twice backtracked after realizing that an error
had been made. At the third attempt, the student failed to
track correctly the value of the variable “i2”:

“So first they are three, i1 and i2. We take the sevens,
they are equal, count becomes one. And now they
become 2, and then comes... yes they become twos, x1
and x2 We take 4 and 5, go to the else-if. i2 is
decreased by one. It becomes one. And i2 is still 2.
And then we take the second, so 4 and 2, and go to the
last section. And there i1 is decreased. i1 becomes 1
and i2 2.”

The above transcript continues, but the error has been
made.
The other student demonstrated a fragile grasp of the
difference between a position in an array, and the
contents of that position:

“... So I have incremented count which would be from
0 to 1, subtract i1 and subtract i2, so they've moved
the pointers. By “pointers”, the student means
variables i1 and i2. I've moved the pointers so now
x1 pointer would be on 4 and in x2 the pointer would
be on 5”. The student appears to mean that x1[i1]
contains 4 and x2[i2] contains 5. However, he then
goes on to say “... they are both equal still so,
probably do the first one again. So count is 2”. By
“both equal still”, the student is asserting that the
Boolean condition x1[i1] == x2[i2] is true, which is
not only incorrect, but contradicts what he said
immediately before, “x1 pointer would be on 4 and in
x2 the pointer would be on 5”. He incorrectly
interpreted the Boolean condition as “i1 == i2”.

Many teachers would recognize this student’s problem as
a common one among novices, and it is also recognized

in the literature [du Boulay, 1989]. For this student, the
confusion over array position versus array contents is
more a case of fragility rather than a complete
misconception, since the student did answer five other
questions correctly. In fact, the student incorrectly
answered the first four questions because of this
confusion, before realizing his error, and went on to
correctly answer 5 of the remaining 8 MCQs, which
included the harder MCQs.

5.4.4 Bottom Quartile Students
There were two transcripts from bottom quartile students.
Both students admitted to guessing.

5.4.5 Accounts of Question 2 by Debrief Students
As mentioned earlier, some transcripts were not included
in the above quartile analysis of Question 2, because they
were the students’ recollection of how they had gone
about answering the question earlier. However, it is
interesting to examine those debriefs, for insight into how
the students view the process. The following are taken
from the debriefs of some third quartile students, who all
answered Question 2 correctly:
1) “... and basically what I did is that I tried to take all

the initial values and write them down so I wouldn’t
lose track of what I was doing if I thought about too
much at once. And again I went through loops, and I
tried to keep track of where the variables were
changing, and I'd make a little notation on the side”.

2) “Its the exact same type of problem in question 2, ... its
the same way I try to solve it ... writing down the
variables, and for every iteration ... try to figure out
what the variables are ... its just, just a way of
working that’s similar to using System.out.println to
figure out the values of the variables. That’s the
method that is used manually, I imagine. That’s
recurring in many if these questions - its all about
putting some numbers into your head ... follow the
structure of the program and see what happens. And
try to remember the numbers ... all the questions are
more or less like question 1”.

3) “The challenge is to keep a mental picture, keep on
watching ... the state of the variables, depending on
how the comparisons work out ... over all, I find them
quite difficult ... I spend some time thinking about
what happens in the first run through the loop what
happens in the second and keep an eye on the
individual ... counters ...”.

136

5.4.6 Discussion of Question 2 Transcripts
Due to the small number of transcripts that could be
analyzed, no firm conclusions can be drawn. However,
some interesting tentative observations can be made,
which could be confirmed by collecting more transcripts.
Most students in the top three quartiles answered the
question by a walkthrough. The principal difference
between top quartile students and the other two quartiles
is that the top quartile students were more meticulous in
the walkthrough process, and therefore made fewer
errors.
Few students in any quartile reasoned explicitly at a
higher level than the walkthrough. That is, few students
articulated the intent of the code, to count the number of
common elements in portions of the two arrays.

5.5 Question 8 by Quartile
Recall that Question 8 is a skeleton-code MCQ, and one
of the harder questions in the set of 12. In this
subsection, we examine student transcripts on that
question by performance quartile.
Of the thirty seven transcripts, twenty four were set aside
from the analysis of Question 8, for the same reasons that
transcripts were set aside for Question 2.
In the earlier performance data analysis, it was shown that
distracter D was very popular with students. This
distracter has the incorrect loop termination condition
j<x.length-1. We therefore decided to concentrate
our analysis on those students who first eliminated
options A and B before deciding between either D or the
correct option, C.

5.5.1 Upper Quartile Students
There were four transcripts from upper quartile students.
One of these students chose option B, and another
narrowed his choice to B and D before choosing D.
Those two transcripts will be ignored in the rest of this
analysis. Of the remaining two students, one correctly
chose option C, and the other chose distracter D
The student who answered correctly used a long
walkthrough. Less than 10% of the way into the two-page
transcript of the walkthrough, that student says:

 “... So I'm just going to go ahead and trial and error.
I'll set it equal, I'll put in the A, the A answer. ”

The student does that, and proceeds in a manner similar to
that of the transcript in Figure 5.1 About 40% of the way
through the two-page transcript, the student starts the
walkthrough again:

“I'm just going to start over because I didn't write
down enough.”

The student proceeds as before. At the turning from page
1 to page 2 of the transcript, which is early in this second
walkthrough, the student makes an inference about the
code in option A:

“Actually the problem with putting in that code would
be that it starts at the beginning of the array every
time for the second value, the value of j. ... So it can't
be A. So now I'm trying ... but I'm not going to bother
with B because it's starting out at the beginning of the
array for j too. So now I'm looking at C.”

Early in the walkthrough of option C, the student
becomes more confident:

“I don't see any reason why this one shouldn't work so
I'm going to go ahead and try the last value when i
equals 4. j equals 5, so 5 is less than 6. We go inside
the for loop. Is 1 greater than 3? No. So j equals 6. 6
is not less than 6 and i would get incremented and 5 is
not less than 5. So it seems that one would work. I'm
going to go ahead and try D real fast. I see the only
difference is that in j, in the for loop with j, the length
is equal to, is compared to length-1. So I'm just going
to try it real fast but I think it's going to end up
skipping a spot. So i is 0, 0 is less than 5, true. j
equals 0 plus 1, so 1. 1 is less than 5. I'm just going
to go ahead and skip to where j is 4. So is 4 less than
1? It’s true. And j would get incremented but it would
be 5 but that doesn't pass the for loop test so it would
skip the last value in the array so D would not work
...”

In the above transcript, we see signs of an emerging
understanding of the concept and importance of boundary
conditions.
The remaining student, who narrowed the choice to C and
D before incorrectly choosing D, reasoned much more
quickly about his choice:

“If you try to go all way to position 6, we’ll have an
array index out of bounds error, so want it to go to 6-
1 because that’ll be the actual array index”.

It is difficult to see how students could incorrectly reason
like this in Question 8, but go on to answer the very next
question correctly, when it also contains a loop
termination condition. However, as Table 3.3 shows, only
51% of students answered Question 8 correctly, but 73%
answered Question 9 correctly. As we speculated earlier,
perhaps when students are answering Question 8 they are
distracted by the loop condition on the same page, in the
outer loop: i<x.length-1.

5.5.2 Second Quartile Students
In the earlier performance data analysis, it was shown that
options C and D were almost equally popular with second

137

quartile students. There were six examinable transcripts
from these students. All six students narrowed their
choice to option C or D, and two correctly chose C:
1) “It has to be either C or D. Does it go until the end?

Or doesn't it? But it really should go until the end,
shouldn't it? Yes, it should, so that's C.”

2) “...so the problem is, is it x.length or x.length-1? So,
then it goes to x.length-1. So you look at the number
up to the second last number. The next one should
look at every number, should look at every number
plus the last number which is … [indecipherable] ... If
you say x.length-1 you’re not going over two numbers
so this is the correct answer. C is the correct
answer”.

Of the four students who chose option D, one admitted to
guessing. The explanations offered by two of the
remaining three students for choosing option D seem little
different from the explanations given by the students who
chose option C:
1) “And you need to compare until you get to the end of

the array and the last element of the array is length-1
...”.

2) “... you want to go to the end of the array so that's
x.length-1”.

The remaining student was quoted in the paper earlier.
This is the student who admitted to choosing option D
because that loop condition was most like the outer loop
condition:

“Yeah I chose this one because I thought it would be
the same, if your looking at the same number of values
in here.”

5.5.3 Third Quartile Students
There were two examinable transcripts from these
students. Both narrowed their choice to option C or D, but
then incorrectly chose D:
1) “The last element is like length-1 ... so then it is D.”
2) The student reasoned that if option C was used “... it

would sort of causes segmentation error”.

5.5.4 Bottom Quartile Students
There was one transcript from a bottom quartile student,
and the student admitted to guessing.

5.5.5 Discussion of Transcript data for Question 8
As with Question 2, few firm conclusions can be drawn
about Question 8, due to the small number of transcripts
that could be analyzed.

In choosing between options C and D, students manifest a
nascent ability to reason at a higher level. At this stage of
their development, many reason incorrectly, and choose
option D. Given that they were reasoning at a higher
level, it is perhaps not surprising that many students did
not doodle when they attempted Question 8.
While students in all quartiles struggled to choose
between options C or D, the performance data shows that
students in the top three quartiles were consistently able
to eliminate options A and B. Therefore, students are
capable of some degree of analytical thinking on these
skeleton-code MCQs. However, that many students
struggle to correctly choose option C over D is evidence
that these analytical skills are, at this stage of their
development, fragile.

6. GENERAL DISCUSSION
Having looked at all the evidence available to this study,
we now make some general observations.

6.1 Reading versus Writing
The question arises as to what relevance there is between
the comprehension tasks studied by this working group
and the ability of students to write code.
Even when our principal aim is to teach students to write
code, we require students to learn by reading code. In our
classrooms we typically place example code before
students, to illustrate general principles. In so doing, we
assume our students can read and understand those
examples. When we exhort students to read the textbook,
we assume that students will be able to understand the
examples in that book.
Perkins et. al (1989) claim that the ability to perform a
walkthrough is an important skill for diagnosing bugs,
and therefore the ability to review code is an important
skill in writing code. Soloway (1986) claims that, among
many other abilities, skilled programmers carry out
frequent “mental simulations”, of both abstract designs-
in-progress and code being enhanced, as a check against
unwanted dynamic interactions between components of
the system. He argues that such simulation strategies
should be taught explicitly to students. Many of our
teaching traditions date back to the era of punch cards. In
the days of overnight batch runs, there was little need to
explicitly encourage students to carefully check their code
before submitting it for a batch run, as a careless error
could waste a whole day. In an era where the next test-run
is only a mouse-click away, we need to place greater
explicit emphasis on mental simulation as part of the
process of writing code.

138

Wiedenbeck [1985] found that expert programmers carry
out low-level programming-related activities faster than
novices. Such activities include identifying syntax errors
in a single line of code, and assessing the correctness of
loops containing less than 10 lines of code. Wiedenbeck
concluded that the expert programmers had “automated”
these processes, so that little mental attention was
required. This automation allowed the experts to
concentrate on higher-level problem-solving tasks. As a
consequence of these findings, Wiedenbeck suggested
that the teaching of novice programmers should “stress
continuous practice with basic materials” until the
novices have automated the practice [p. 389]. Therefore,
perhaps an early emphasis on program comprehension
and tracing, with the aim of automating basic skills, might
then free the minds of students to concentrate on
problem-solving.
And of course, at some time of their career, many
programmers will maintain programs written by others,
where program comprehension skills are vital [Deimel
and Naveda, 1990].

6.2 Misconceptions
Spohrer and Soloway [1986, 1989] collected data about
bugs in programs written by novices, where the bugs
could be attributed to misconceptions about programming
constructs. They concluded that mistakes due to
misconceptions were not as widespread as was generally
believed.
In this study, we also see few comprehension errors due
to misconceptions. In only one of the twelve multiple
choice questions did there appear to be a frequent
misconception about a programming construct. That was
in Question 6, where students did not completely
understand the semantics of “return”. Also, in the
transcript of one student, who scored 5 out of 12, there
was evidence of confusion between the position in an
array and the contents of that position. It is therefore
possible, nor would it be surprising, that students who
scored a particularly low mark out of twelve on these
multiple choice questions may have misconceptions.
Among the top 75% of students, in all but one question,
there is little evidence of construct misconceptions.
However, the multiple choice questions in this study used
only code fragments performing iterative processes on
arrays. Students may have misconceptions associated with
concepts not examined by these multiple choice
questions.

6.3 Non-Idiomatic Questions
Recall that Question 2 is, in the terminology of this study,
non-idiomatic. That is, it does not process the entire

contents of the two arrays, as some programmers might
first expect. The performance data shows that strong
students tend to see that non-idiomatic detail, but weaker
students do not. To what extent then, are MCQs like
Question 2 “trick” questions?
As Perkins et. al (1989) argued, the ability to read what a
piece of code actually does, rather than what we might
think on a first quick inspection, is an important
debugging skill. If students are forewarned that the
pieces of code in the MCQs may be non-idiomatic (or
buggy, depending upon one’s point of view), then we
regard such questions as legitimate. A weakness of this
study is that only students at the “base” institution where
the questions were written were guaranteed to be so
forewarned. However, since the data for the base
institution is broadly consistent with data from the
satellite institutions, this weakness did not have a major
impact on the study.
The authors of this working group acknowledge,
however, that a weakness of non-idiomatic code is that it
encourages students to mechanically hand execute code,
when we would also like them to read with the aim of
abstracting to schema.

6.4 Meaning and Context
When teaching novices to write programs, we emphasize
the importance of using meaningful variable names. They
are one type of beacon [Brooks, 1983; Wiedenbeck,
1986] which helps a programmer understand a piece of
code. There are also rules of programming discourse
[Soloway and Ehrlich, 1984] that set up expectations in
the minds of programmers, as they read code. Beyond the
program itself, observations by Pennington [1987]
indicate that programmers also use a “cross-referencing”
reading strategy, where they relate parts of a program to
the problem domain. For example, when reading a
program that tracks engineering wiring specifications, a
programmer uses their real-world knowledge of wiring.
The MCQs in this study tend not to contain meaningful
variable names, other beacons or conventions of
discourse. Nor do these MCQs relate to a real-world
domain. Therefore, to some extent, these MCQs are
artificial problems, removed to some degree from the
task of reading real programs. However, most of the code
in these MCQs involve some sort of plausible operation
on arrays. For example, Question 2 uses code for
counting the number of common elements in two arrays
(albeit non-idiomatically).
While the comprehension of real programs may involve
higher-level strategies using beacons, rules of discourse,
and cross-referencing, those skills do not replace the
ability to systematically trace through code. Detienne and

139

Soloway [1990] found that when higher-level skills fail to
elucidate program behavior, expert programmers resort to
other skills, including simulating the program.
Furthermore, the authors of this paper believe that it may
be appropriate to first teach systematic tracing as a base
skill, then allow students to build these higher-level
comprehension skills upon that base.

6.5 Other Languages
Of the twelve participating institutions in this working
group, eleven teach Java as a first language and one
teaches C++. This restriction to only two languages may
be an indication of their popularity as first programming
languages. However, it may also be an indication that
Java and C++ are particularly difficult to teach as first
languages. It would be interesting to see this study
replicated using other programming languages. We
suspect, however, that the iterative process on arrays
studied in this paper are generic to such a degree that
students will perform similarly irrespective of what
language they are taught.

6.6 Comparative Data
Much of the literature that studies novice programmers
contrasts their performance on a given task with the
performance of expert programmers. As a follow-up to
this study, it would be interesting to collect data from
expert programmers to see how their approach to
answering these twelve multiple choice questions
compares with that of the novices studied in this paper.

6.7 Availability of Data
The working group intends to eventually release portions
of its data so that others may do their own analysis.
Information abut data availability can be found at a web
site [Lister, 2004].

7. CONCLUSION
This paper is a report from an ITiCSE 2004 working
group. It builds on the work of the earlier McCracken
working group. The McCracken group established that
many first-year programming students cannot program at
the conclusion of their introductory courses. While a
popular explanation for that inability is that students
cannot problem-solve, in the strong five-step sense
defined by the McCracken group, this working group has
established that many students lack knowledge and skills
that are a precursor to problem-solving. These missing
elements relate more to the ability of students to read
code than to write it. Many of the students manifested a

fragile ability to systematically analyze a short piece of
code.
This working group does not argue that all students who
manifest a weakness in problem-solving do so because of
reading-related factors. We accept that a student who
scores well on the type of tests used in this study, but who
cannot write novel code of similar complexity, is most
likely suffering from a weakness in problem solving.
This working group merely makes the observation that
any research project that aims to study problem-solving
skills in novice programmers must include a mechanism
to screen for subjects weak in precursor, reading-related
skills.
This study assumed that the knowledge and skills that are
the focus of this study are precursors to problem solving.
The next logical research step is to examine that
assumption, by combining the designs of the McCracken
study and this study, to ask students to both solve tasks
like those in this study, and also write code of similar
complexity.

Acknowledgements
Eight of the twelve authors began discussing this study
during the “Bootstrapping” and “Scaffolding” Projects,
run by Sally Fincher, Marian Petre, and Josh Tenenberg.
These projects were funded by the National Science
Foundation (No. DUE-0122560). Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. At
some institutions, the authors of this paper did not teach
the classes in which students were given the MCQ tests.
We are therefore grateful for the cooperation of the
teachers of those classes, David Bernstein (James
Madison), Kerttu Pollari-Malmi (Helsinki), Mohamed
Kerasha (Connecticut), Roger Simons and Ying Zhou
(Rhode Island). The authors thank Mike McCracken for
his advice and support, and also thank the organizers of
the Leeds conference for providing the working group
with excellent facilities. Finally, the author’s thank
George Burdell, for his thoughful comments on a draft of
this paper.

REFERENCES
Brooks, R. (1983) Towards a theory of the

comprehension of computer programs. International
Journal of man-Machine Studies, 18, pp. 543-554.

Clancy, M. and Linn, M. (1999), Patterns and Pedagogy.
30th Technical Symposium on Computer Science
Education (SIGCSE 1999), New Orleans, LA USA.
pp. 37-42.

140

Davies, S. (1996) Display-based problem solving
strategies in computer programming. In Gray, W, and
Boehm-Davis, D. (Eds) Empirical Studies of
Programmers: 6th Workshop. Ablex Publishing
Corporation, NJ. pp. 59-76.

Detienne, F. (1990) Expert Programming Knowledge: A
Schema-based Approach. In Hoc, J, Green, T,
Samurcay, and Gilmore, D. (Eds) Psychology of
Programming. Academic Press, London. pp 206-222.

Detienne, F, and Soloway, E. (1990) An empirically-
derived control structure for the process of program
understanding. Int. J. of Man-Machine Studies, 33,
pp. 323-342.

Deimel, L.E. & Naveda, J. F. (1990) Reading Computer
Programs: Instructor’s Guide and Exercises. Software
Engineering Institute, Carnegie-Mellon University.
http://www.deimel.org/comp_sci/reading_computer_p
rograms.htm (August 2004) Updated bibliography at
http://www2.umassd.edu/SWPI/ProcessBibliography/
bib-codereading2.html (August 2004).

du Boulay, B. (1989) Some Difficulties of Learning to
Program. In Soloway, E. and Spohrer, J., Eds. pp
283–299.

Ebel, R. and Frisbie, D. (1986) Essentials of Educational
Measurement. Prentice Hall, Englewood Cliffs, NJ.

Haladyna, T. (1999) Developing and Validating
Multiple-Choice Questions (2nd Edition), Lawrence
Erlbaum Associates, Mahwah, NJ.

Kuittinen, M, and Sajaniemi, J. (2004) Teaching Roles of
Variables in Elementary Programming Courses. 9th
Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education
(ITiCSE’04), Leeds, UK. pp 57–61.

Linn, R. and Gronlund, N. (1995) Measurement and
Assessment in Teaching, . Prentice Hall, Upper
Saddle River, NJ.

Lister, R. (2004) Availability of working group data.
http://www-staff.it.uts.edu.au/~raymond/leeds2004.

McCracken, M., V. Almstrum, D. Diaz, M. Guzdial, D.
Hagen, Y. Kolikant, C. Laxer, L. Thomas, I. Utting,
T. Wilusz, (2001) A Multi-National, Multi-
Institutional Study of Assessment of Programming
Skills of First-year CS Students, SIGCSE Bulletin,
33(4). pp 125-140.

Pennington, N. (1987) Comprehension Strategies in
Programming. In Olson, G., Sheppard, S., and
Soloway, E. (Eds) Empirical Studies of Programmers:
Second Workshop. Ablex, NJ, USA. pp 100-113.

Perkins, D. and Martin, F. (1986) Fragile Knowledge and
Neglected Strategies in Novice Programmers. In
Soloway, E. and Iyengar, S. (Eds) pp. 213-229.

Perkins, D, Hancock, C, Hobbs, R, Martin, F, and
Simmons, R. (1989). Conditions of Learning in
Novice Programmers. In Soloway, E. and Spohrer, J.,
Eds. pp 261–279.

Rist, R. S. (1986). Plans in Programming: Definition,
Demonstration and Development. In Soloway, E. and
Iyengar, S., Eds. pp 28-47.

Rist, R. (2004) Learning to Program: Schema Creation,
Application, and Evaluation. In Fincher, S and Petre,
M., Eds (2004) Computer Science Education
Research. Swets & Zeitlinger.

Soloway, E. and Ehrlich, K (1984) Empirical Studies of
Programming Knowledge. IEEE Transactions on
Software Engineering, SE-10(5):595-609.

Soloway, E. (1986). Learning to program = Learning to
construct mechanisms and explanations.
Communications of the ACM, 29(9). pp. 850-858.

Soloway, E. and Iyengar, S., Eds (1986) Empirical
Studies of Programmers. Ablex, NJ, USA.

Soloway, E, Adelson, B, and Ehrlich, K. (1988)
Knowledge and Processes in the Comprehension of
Computer Programs. In Glaser, M, Chi, R, Farr, M,
Glaser, R (Eds) The Nature of Expertise. Lawrence
Erlbaum Associates, Hillsdale, NJ, USA. pp 129-152.

Soloway, E. and and Spohrer, J, Eds (1989), Studying the
Novice Programmer. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1989.

Spohrer, J. and Soloway, E. (1986) Analyzing the High
Frequency Bugs in Novice Programs. In Soloway, E.
and Iyengar, S. (Eds) pp. 230-251.

Spohrer, J. and Soloway, E. (1989) Novice Mistakes: Are
the Folk Wisdoms Correct? In Soloway, E. and
Spohrer, J., Eds. pp 401–416.

Thomas, L. Ratcliffe, M., and Thomasson, B. (2004)
Scaffolding with Object Diagrams in First Year
Programming Classes: Some Unexpected Results.
35th Technical Symposium on Computer Science
Education (SIGCSE 2004), Norfolk, VA USA. pp.
250-254.

Wiedenbeck, S. (1985) Novice/expert differences in
programming skills. Int. J. of Man-Machine Studies,
23, pp. 383-390.

Wiedenbeck, S. (1986) Processes in Computer Program
Comprehension. In Soloway, E. and Iyengar, S., Eds.
pp 48-57.

141

Appendix A: The 12 Multiple Choice Questions
Questions were given to students in single column
format, usually with one complete question per page.
Here, the indenting of some questions has been altered to
fit the journal format. Answers for the questions are given
after the final question.

Question 1
Consider the following code fragment:

int[] x = {2, 1, 4, 5, 7};
int limit = 3;
int i = 0;
int sum = 0;
while ((sum<limit) && (i<x.length)){

++i;
sum += x[i];

}

What value is in the variable “i” after this code is
executed?
a) 0
b) 1
c) 2
d) 3

Question 2.
Consider the following code fragment:

int[] x1 = {1, 2, 4, 7};
 int[] x2 = {1, 2, 5, 7};
 int i1 = x1.length-1;
 int i2 = x2.length-1;
 int count = 0;
 while ((i1 > 0) && (i2 > 0))
 {
 if (x1[i1] == x2[i2])
 {
 ++count;
 --i1;
 --i2;
 }
 else if (x1[i1] < x2[i2])
 {
 --i2;
 }
 else
 { // x1[i1] > x2[i2]
 --i1;
 }
 }
After the above while loop finishes, “count” contains
what value?
a) 3
b) 2
c) 1
d) 0

Question 3.
Consider the following code fragment:

int [] x = {1, 2, 3, 3, 3};
boolean b[] = new boolean[x.length];

for (int i = 0; i < b.length; ++i)
 b[i] = false;

for (int i = 0; i < x.length; ++i)
 b[x[i]] = true;

int count = 0;

for (int i = 0; i < b.length; ++i)
{
 if (b[i] == true) ++count;
}

After this code is executed , “count” contains:
a) 1
b) 2
c) 3
d) 4
e) 5

Question 4.
Consider the following code fragment:

int[] x1 = {0, 1, 2, 3};
int[] x2 = {1, 2, 2, 3};
int i1 = 0;
int i2 = 0;
int count = 0;
while ((i1 < x1.length) &&
 (i2 < x2.length))
{
 if (x1[i1] == x2[i2])
 {
 ++count;
 ++i2;
 }
 else if (x1[i1] < x2[i2])
 {
 ++i1;
 }
 else
 { // x1[i1] > x2[i2]
 ++i2;
 }
}

After this code is executed, “count” contains:
a) 0
b) 1
c) 2
d) 3
e) 4

142

Question 5.
Consider the following code fragment:

int[] x = {0, 1, 2, 3};
int temp;
int i = 0;
int j = x.length-1;

while (i < j)
{
 temp = x[i];
 x[i] = x[j];
 x[j] = 2*temp;
 i++;
 j--;
}

After this code is executed, array “x” contains the values:

a) {3, 2, 2, 0}
b) {0, 1, 2, 3}
c) {3, 2, 1, 0}
d) {0, 2, 4, 6}
e) {6, 4, 2, 0}

Question 6.
The following method “isSorted” should return true if
the array is sorted in ascending order. Otherwise, the
method should return false:

public static boolean isSorted(int []x)
{

//missing code goes here
}

Which of the following is the missing code from the
method “isSorted” ?

(a) boolean b = true;

for (int i=0 ; i<x.length-1; i++)
{

if (x[i] > x[i+1])
b = false;

else
b = true;

}
return b;

(b) for (int i=0; i<x.length-1; i++)

{
if (x[i] > x[i+1])

return false;
}
return true;

(c) boolean b = false;

for (int i=0; i<x.length-1; i++)
{

if (x[i] > x[i+1])
b = false;

 }
return b;

(d) boolean b = false;

for (int i=0;i<x.length-1;i++)
{

if (x[i] > x[i+1])
b = true;

}
return b;

(e) for (int i=0;i<x.length-1;i++)

{
if (x[i] > x[i+1])

return true;
 }

return false;

Question 7.
Consider the following code fragment:

int[] x = {2, 1, 4, 5, 7};
int limit = 7;
int i = 0;
int sum = 0;

while ((sum<limit) && (i<x.length))
{

sum += x[i];
++i;

}

What value is in the variable “i” after this code is
executed?

a) 0
b) 1
c) 2
d) 3
e) 4

143

Question 8.
If any two numbers in an array of integers, not necessarily
consecutive numbers in the array, are out of order (i.e. the
number that occurs first in the array is larger than the
number that occurs second), then that is called an
inversion. For example, consider an array “x” that
contains the following six numbers:

4 5 6 2 1 3

There are 10 inversions in that array, as:

x[0]=4 > x[3]=2
x[0]=4 > x[4]=1
x[0]=4 > x[5]=3
x[1]=5 > x[3]=2
x[1]=5 > x[4]=1
x[1]=5 > x[5]=3
x[2]=6 > x[3]=2
x[2]=6 > x[4]=1
x[2]=6 > x[5]=3
x[3]=2 > x[4]=1

The skeleton code below is intended to count the number
of inversions in an array “x”:

int inversionCount = 0;

for (int i=0 ; i<x.length-1 ; i++)
{

for xxxxxx
{

if (x[i] > x[j])
++inversionCount;

 }
}

When the above code finishes, the variable
“inversionCount” is intended to contain the number of
inversions in array “x”. Therefore, the “xxxxxx” in the
above code should be replaced by:

a) (int j=0 ; j<x.length ; j++)
b) (int j=0 ; j<x.length-1; j++)
c) (int j=i+1; j<x.length ; j++)
d) (int j=i+1; j<x.length-1; j++)

Question 9.
The skeleton code below is intended to copy into an array
of integers called “array2” any numbers in another integer
array “array1” that are even numbers. For example, if
“array1” contained the numbers:

array1: 4 5 6 2 1 3

then after the copying process, “array2” should contain in
its first three places:

array2: 4 6 2

The following code assumes that “array2” is big enough
to hold all the even numbers from “array1”:

int a2 = 0;

for (int a1=0 ; xxx1xxx ; ++a1)
{

// if array1[a1] is even
 if (array1[a1] % 2 == 0)
 {
 // array1[a1] is even,

// so copy it
xxx2xxx;
xxx3xxx;

 }
}

The missing pieces of code “xxx1xxx”, “xxx2xxx” and
“xxx3xxx” in the above code should be replaced
respectively by:

a) a1<array1.length

++a2
array2[a2] = array1[a1]

b) a1<array1.length
array2[a2] = array1[a1]
++a2

c) a1<=array1.length
array2[a2] = array1[a1]
++a2

d) a1<=array1.length
++a2
array2[a2] = array1[a1]

Hint: in all four options above, the second and third
parts are the same, just reversed.

144

Question 10.
Consider the following code fragment:

int[] array1 = {2, 4, 1, 3};
int[] array2 = {0, 0, 0, 0};
int a2 = 0;

for (int a1=1; a1<array1.length; ++a1)
{

if (array1[a1] >= 2)
{

array2[a2] = array1[a1];
++a2;

}
}

After this code is executed, the array “array2” contains
what values?

a) {4, 3, 0, 0}
b) {4, 1, 3, 0}
c) {2, 4, 3, 0}
d) {2, 4, 1, 3}

Question 11.
Suppose an array of integers “s” contains zero or more
different positive integers, in ascending order, followed
by a zero. For example:

int[] s = {2, 4, 6, 8, 0};

 or int[] s = {0};

Consider the following “skeleton” code, where the
sequences of “xxxxxx” are substitutes for the correct
Java code:

 int pos = 0;
 while ((xxxxxx) && (xxxxxx))

++pos;

Suppose an integer variable “e” contains a positive
integer. The purpose of the above code is to find the place
in “s” occupied by the value stored in “e”. Formally,
when the above “while” loop terminates, the variable
“pos” is determined as follows:

1. If the value stored in “e” is also stored in the array,

then “pos” contains the index of that position. For
example, if e=6 and s = {2, 4, 6, 8, 0}, then pos should
equal 2.

2. If the value stored in “e” is NOT stored in the array,

but the value in “e” is less than some of the values in
the array then “pos” contains the index of the lowest
position in the array where the value is larger than in

“e”. For example, if e=7 and s = {2, 4, 6, 8, 0}, then
pos should equal 3.

3. If the value stored in “e” is larger than any value in “s”,

then “pos” contains the index of the position containing
the zero. For example, if e=9 and s = {2, 4, 6, 8, 0},
then pos should equal 4.

The correct Boolean condition for the above “while” loop
is:
(a) (pos < e) && (s[pos] != 0)
(b) (pos != e) && (s[pos] != 0)
(c) (s[pos] < e) && (pos != 0)
(d) (s[pos] < e) && (s[pos] != 0)
(e) (s[pos] != e) && (s[pos] != 0)

Question 12.
This question continues on from the previous question.
Assuming we have found the position in the array “s”
containing the same value stored in the variable “e”, we
now wish to write code that deletes that number from the
array, but retains the ascending order of all remaining
integers in the array. For example, given:

s = {2, 4, 6, 8, 0};
e = 6;
pos = 2;

The desired outcome is to remove the 6 from “s” to give:

s = {2, 4, 8, 0, 0};

Consider the following “skeleton” code, where “xxxxxx”
is a substitute for the correct Java code:

do {
 ++pos;
 xxxxxx;

} while (s[pos] != 0);

The correct replacement for “xxxxxx” is:

(a) s[pos+1] = s[pos];
(b) s[pos] = s[pos+1];
(c) s[pos] = s[pos-1];
(d) s[pos-1] = s[pos];
(e) None of the above

Correct options for the 12 questions

1 2 3 4 5 6 7 8 9 10 11 12
c b c e a b d c b a d d

145

Appendix B. Analysis of individual questions

This appendix contains statistical results and analysis for
each of the MCQs. The analyses for questions 2 and 8,
found in the body of the text, are not repeated. Questions
with similar structure are grouped in sections B.1 to B.3.
B.1 Fixed-code questions with int answers
Questions 1-4 and 7 all give an array and ask for the
value of an int variable, which represents either the
number of times something occurs in the array or the
index of some position in the array. Theoretically, there is
a finite set of possible answers – the set of indices for the
given array, or the range from 0 to the total number of
elements in the array.
Consider Question 1, for example. This question involves
searching through an array, accumulating the sum of the
array elements in a variable, and recording the index at
which the sum reaches a certain limit. There are five
elements in the array, so the possible index values include
0, 1, 2, 3, and 4. If the index value is incremented at the
end of the loop, it might also be 5. Not all of these values
are provided as choices: the options only include 0, 1, 2,
and 3.
Student responses to this question are summarized in the
graph in Figure B1, below. This graph shows that the top
students (those in the first quartile) did well; over 90% of
them chose C (the correct answer). Although the second
and third quartiles don’t do as well, they still have a
strong preference for the correct answer. The question
distinguishes between quartiles 1-3 and the weak
students, who choose the correct answer and choice D
with approximately equal frequency.

Question 1

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s A
B
C
D

Figure B1: Student responses to Question 1 by quartiles.

Even the students in the fourth quartile know something,
however: not all choices are equally popular. Choice A is
much less popular than the rest, even among the students
in the fourth quartile. The value of choice A is 0, and we
hypothesize that even weak students can usually see that
i++ changes the value of i at least once.
The discussion of Question 2 is in Section 4.1.

Question 3, another fixed-code question, involves
manipulating two arrays. In this case, the second array, an
array of booleans, is used to keep track of the distinct
values contained in the first (int) array. Finally, the
number of distinct values in the int array (each
corresponding to true in the boolean array) is counted.
The number of elements in the array is 5, so the possible
values for the number of distinct elements are 1, 2, 3, 4,
and 5. These values are all given as choices.

Question 3

0

20

40

60

80

100

1 2 3 4

quartile
%

 o
f a

ns
w

er
s A

B
C
D
E

Figure B2: Student responses to Question 3 by quartiles.
Judging by the results, the students had little trouble with
this one. Once again, the top students do very well, and
quartiles 2-3 have a strong preference for the correct
answer. Choice E becomes increasingly popular as we go
from the top students down to the weak students. Choice
E, “5,” is the one a student would pick if he or she failed
to understand the statement

b[x[i]] = true;

and simply assumed it was the same as
 b[i] = true;

Question 4

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s A
B
C
D
E

Figure B3: Student responses to Question 4 by quartiles.

Question 4, also a fixed-code question, is very similar to
Question 2. It also involves comparing two arrays,
looking for matching elements. Again, each array
contains four elements.

146

There are three differences between Questions 2 and 4:
1. Question 4 starts at position 0 and increments the array

index; Question 2 starts at the final position of the
array and decrements the index.

2. Question 4 examines all positions in the array;
Question 2 examines all but one.

3. When Question 4 finds a matching pair, it changes only
one of the indices; Question 2 changes both. Thus, for
example, suppose we have two arrays: {6, 0} and {6,
6}. The code in Question 4 finds two matches; the
Question-2 code only finds one.

Because of these differences, the possible answers here
range from 0 (e.g. {1, 2, 3, 4} and {5, 6, 7, 8}) to 4 (e.g.
{2, 3, 4, 5} and {2, 2, 2, 2}.)
The choices given for this question are related to the most
likely student misconceptions. The correct answer is 4
(choice E). If you think this code is counting duplicates in
the same way as Question 2, you would get the answer 3
(which is choice D). If you see that the code is counting
slightly differently, but think that it’s still ignoring the
first element of each array, you would also get 3. If you
make both mistakes, you would get 2 (choice C).
In the graph for Question 4, we see the familiar pattern:
the top students do very well, quartiles 2-3 do less well
but still have a strong preference for the correct answer,
and quartile 4 does even less well and does not have a
preference for the correct answer.
We also see, however, that all four quartiles distinguish
among the distracters, with choice D as the most popular,
followed by choice C, consistent with the fact that the
likely misconceptions lead to those answers. Choices A
and B, which do not correspond to any of the likely
misconceptions, are the least popular. And once again, 0
(here, choice A) is a very unpopular choice.
Here is the graph for question 7:

Question 7

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s A
B
C
D
E

Figure B4: Student responses to Question 7 by quartiles.

Question 7 is very similar to Question 1. Both questions
involve a single array. In both cases, the code searches
through the array, accumulating the sum of the array
elements and recording the index at which the sum
reaches a certain limit. The array given in Question 1 is
identical to the array given in Question 7, and in both
cases, the code starts at position 0 of the array and works
forward. In both cases, since the array has five elements,
the possible values of the array index are 0, 1, 2, 3, and 4
(and 5, if the array index is incremented after being used).
There are three differences between the questions:

1. The value of the limit (3 for question 1, and 7 for
question 7).

2. The order of the steps inside the while loop. In
Question 1, the index is incremented first, then
the element is added to the sum; in Question 7,
the element is added first, and then the index is
incremented.

3. the choices for question 7 include 4 (choice E),
as well as 0, 1, 2, and 3.

Once again, the top students do very well, and the
students in quartiles 2-3 do less well but have a strong
preference for the correct answer. Here the students in
quartile 4 actually have a slight preference for the correct
choice as well. There are relatively few errors, and
transcripts indicate that some of those were due to a
tracing error, rather than a lack of understanding.
In summary, all these questions are similar: they all help
us discriminate between the top three quartiles, on the one
hand, and the weakest students on the other. Their trace-
line graphs look similar, they are all easy questions for
the top students, and in each case the fourth quartile
students are the only ones who do not have a strong
preference for the correct answer. Sometimes, as in
Question 2, we can see evidence that students are
assuming the code fits idioms they know (such as
processing arrays starting from 0). And 0 always seems to
be a bad distracter.

B.2 Fixed-code questions with array answers
Questions 5 and 10 are also fixed-code questions, and
they also give an array and some code that processes the
array. Instead of an int value, however, they ask for the
resulting array.

147

Here is the graph for Question 5:

Question 5

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s A
B
C
D
E

Figure B5: Student responses to Question 5 by quartiles.
The code for Question 5 takes one array and reverses the
order of the elements in the array, except for one thing:
the elements that were in the first half of the array are
doubled before being moved to their new positions in the
second half of the array. Thus, array {1, 3, 5, 7} would
become {7, 5, 6, 2}.
The choices are related to possible student
misconceptions. They include:

o The original array
o The array you would get if you reversed the

original array, but didn’t double any of its
elements

o The array you would get if you reversed the
original array and doubled all of its elements

o The array you would get if you doubled all of the
array elements, but didn’t reverse it. The correct
answer.

This question discriminates even more clearly than the
earlier questions between the top three quartiles and the
weakest students. It was one of the easiest questions for
the top three quartiles, as the graph shows: the trace line
for the correct answer has a similar shape, but it is very
high, particularly for quartiles 2 and 3. Over 95% of the
students in the second quartile chose the correct answer.
Even in the third quartile, more than 70% of the students
chose the correct answer.
The first and second quartiles show no clear preference
for any of the distracters; the third quartile very slightly
prefers choice D (doubling the whole array without
reversing it), and the fourth quartile prefers choice D even
to the correct answer. Student notes on the exams indicate
that even weak students can see that something is being
multiplied by two, but they find the logic of the swapped
elements harder to follow.

Question 10

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s

A
B
C
D

Figure B6: Student responses to Question 10, by

quartiles.

Question 10 is the last of the fixed-code questions. It
involves filtering an array: taking all numbers greater than
or equal to two and copying them into a second array.
The first element in the array is ignored, however.
The choices, again, are related to possible student
misconceptions. They include:

o the array with all the elements from the original
array that are greater than or equal to two (what
you would get if you filtered, but didn’t notice
that the copying started with position 1)

o the array you would get if you started with
position 1, but didn’t filter

o the array you would get if you didn’t filter and
didn’t notice that the copying started with
position 1 (i.e., the original array)

o the correct answer.
Overall, 70% of the students solved this question
correctly, and the students in Quartile 1 overwhelmingly
preferred the correct answer (A). Students in Quartiles 2
and 3 also strongly preferred the correct answer. The
weak students, on the other hand, evidently guessed: they
chose all answers with equal frequency.
All but the bottom quartile noticed something amiss:
choice D is the one that contains both of the two possible
errors, and, as shown in Figure 10 it is very unpopular
with all of Quartiles 1-3. In Quartiles 2-3, Choice C (the
answer you get if you assume array processing includes
the whole array) is somewhat more popular than choice B
(the one you get if you notice that the first element of the
array is being ignored, but you don’t filter the array).
The students in the fourth quartile appear to be choosing
almost at random, perhaps because they have no idioms to
rely on.
In summary, the fixed-code questions all have a lot in
common. Their trace-line graphs are very similar: the top
students do very well, the students in the second and third
quartiles do less well, but still strongly prefer the correct

148

answer, and the students in the fourth quartile do not have
a preference for the correct answer. We can sometimes
draw conclusions based on which distracters the students
choose. This evidence tends to support the idea that many
students are influenced by standard idioms, such as
looping through an array from position 0 to position
length-1, but are not yet comfortable enough with those
idioms to know when not to use them.

B.3 Skeleton-code questions
By this point, the reader might wonder if trace-line graphs
always look the same. Two of the skeleton-code questions
were relatively easy for the students, and their graphs are
similar to the graphs for the fixed-code questions. The
other three questions were consistently the most difficult,
across quartiles and across institutions, and their graphs
look quite different. Question 8, a difficult skeleton-code
question, was presented in section 4, so is not presented
here.
Let’s begin with an easier question. Here’s the graph for
Question 9:

Question 9

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s

A
B
C
D

Figure B7: Student responses to Question 9 by quartiles.

In this question, students are told that a given code
fragment is intended to copy the even numbers contained
in one array into a second array; they are asked to fill in
three blanks in the code.
The choices are clearly parallel, and if the layout is not
enough to make this clear to the students, a hint is given.
The students’ attention is focused on two points:

1. Should the loop stop processing the array when
the index is equal to the length of the array, or
when it’s equal to the length minus 1?

2. Should the array index of the second array be
incremented at the beginning of the loop body or
at the end?

The correct answer to both of these questions was the
idiomatic one: increment at the end of the loop body, and
stop processing at position length-1.

The choices included:
o Stop processing at the right place, but increment

at the beginning of the loop body
o Stop processing in the right place and increment

at the end of the loop body (the correct answer)
o Stop processing in the wrong place and

increment at the beginning of the loop body (two
errors combined)

o Stop processing in the wrong place but
increment at the end of the loop body

This question was the easiest of the skeleton-code
questions, and one of the easiest questions overall. Of the
top quartile, 98% got the question right. What is more
striking is that even the weak students could differentiate
between answers where the loop counter was incremented
in the beginning (B and C) and those where it was done at
the end (A and D), favoring the correct order of
statements. Given the number of students who guessed in
some of the questions, this is even more noticeable.
The students’ good performance on this question may be
because the idiomatic, predictable answer is in fact the
correct one. It may be because the answers are clearly
distinguished from each other, and the students’ attention
is thus drawn to the key points. It is also possible that
Question 10 had an effect. An alert student might find the
answer to Question 9 in Question 10. Question 10 also
involves filtering one array into another, but it is a fixed-
code question, so the code is provided. On the other hand,
it’s arguable that a student who was alert enough to spot
the similarity between these two questions would have
got them right in any event.
For a very different question, here’s the graph for
Question 6:

Question 6

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s A
B
C
D
E

Figure B8: Student responses to Question 6, by quartiles.
This question asks the student to select the method body
for a boolean method that takes an array of ints and
returns true if the array is sorted in ascending order.
The most obvious difference about this graph is where the
lines cross: the upper line for the correct answer (choice

149

B) crosses the trace line for one of the distracters between
the second and third quartiles. The line also starts quite
low: less than 80% of the students even in the first
quartile chose the correct answer.
This question discriminates between the top and bottom
students: quartiles 1 and 2 on the one hand, and quartiles
3 and 4 on the other. In addition, it reveals
misconceptions that are shared even by some of the top
students.
Students at all levels easily ruled out alternative C, which
always returns false. They also ruled out alternatives D
and E, which return true when the array is not sorted. Top
students, however, chose the correct answer (B) almost
75% of the time, students in the second quartile chose
distracter A almost as often as the correct answer, and
students in the third and fourth quartiles preferred
distracter A to the correct answer.
What explains the popularity of distracter A in this
question? Even the top students chose distracter A more
than 20% of the time. In fact, this was the most effective
distracter on any question for the top students.
The transcripts suggest that students were misled due to
preconceptions about the meaning of a return statement
inside a loop. Choice B, the correct answer, has a return
statement inside a loop; choice A does not. Students who
chose distracter A were not always satisfied with it, but
felt that it was “less bad” than the correct answer, B.
We found three interpretations:

1. When the return statement is encountered, it
returns a value immediately and exits (the
correct interpretation);

2. A return statement inside a loop returns
multiple values;

3. A return statement inside a loop sets a return
value each time through the loop and returns its
final value.

The second interpretation was indicated by comments
such as “It has to return only one true or false, this whole
thing, in the end. Not many.” The third interpretation was
indicated by comments such as “you return false and later
you return true, which is not right,” and “always returns
true,” and “If that returns false it’s still going to return
true every time.” Some students commented on the lack
of a flag: “no identifiers,” “maybe B is wrong because
you are not initializing any variables.”
The problems with return statements inside a loop also
explain the difference between distracters D and E. As
shown on the graph, D is preferred to E, even though they
both have the same logical flaw (they both return true
when the array is not sorted). D sets a flag, however, and
E has a return statement inside a loop.

Finally, consider Questions 11 and 12. These questions
are both related to the same topic, and Question 12
continues on from Question 11. Here’s the graph for
Question 11:

Question 11

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s A
B
C
D
E

Figure B9: Student responses to Question 11, by

quartiles.
As can be seen from the graph, this was an easier
question for the students. It involves an array of integers,
sorted in ascending order, with a “0” as the final element
as a flag to indicate the end of the array. The code is
designed to locate the position in this array where a
particular new element should be inserted. Students were
asked to choose the correct loop condition to fill in a
blank in the code.
The choices focused on two things:

1. the difference between an index (pos) into an
array and the element at that index (s[pos]).

2. the logic of the search. We can’t stop searching
until we find an element that’s greater than the
desired value. The correct condition is while
(s[pos]<e), not while (s[pos] !=
e).

Like the fixed-code questions, this one discriminates
between the top three quartiles, on the one hand, and the
weakest students, on the other. The top students did very
well. They rarely chose any of the distracters, although
when they did, they had a slight preference for distracter
E. Quartiles 2 and 3 did less well than quartile 1, but they
still had a strong preference for the correct answer (D).
When they did choose a wrong answer, they preferred
distracter E to any of the others. In other words, they had
no problem distinguishing between pos and s[pos]
(indicated by their rejection of distracters A-C), but they
were sometimes wrong about the search logic (indicated
by the choice of distracter E).
The fourth-quartile students are much more likely to
choose distracters A-C than students in quartiles 1-3, and
less likely to choose the correct answer. In other words,
they are more likely to be confused about the difference

150

between pos and s[pos] than students in the other
quartiles.
Finally, here’s the trace-line graph for Question 12:

Question 12

0

20

40

60

80

100

1 2 3 4

quartile

%
 o

f a
ns

w
er

s A
B
C
D
E

Figure B10: Student responses to Question 12, by

quartiles.

This was the hardest question, and its graph is the most
complex. Question 11 (like the fixed-code questions)
separates the weak students from the rest; Question 12
separates the top from the mediocre students.
This question involves a single array of ints sorted in
ascending order with a 0 following the last element of the
array, as in Question 11. The code to be written here is
supposed to delete an element in the given position from
the array and shift the rest of the elements to the left to fill
in the gap. Thus, if we delete the 7 from array
{1,3,5,7,9,0}, the result should be {1,3,5,9,0,0}.
The choices focus on two points:

1. When the assignment statement x=y is executed, it is
the value of x that is changed.

2. Inside the loop, the array index is incremented first.

Students who are confused about the direction of the
assignment operator but notice that the index is
incremented first would choose distracter C. Students
who have a solid grasp on the assignment operator but
fail to notice that the array index is incremented first
would choose distracter B. This is the expected, idiomatic
code. Distracter A contains both errors. D is the correct
answer, and E is “none of the above.” This is the only
question that contained a “none of the above” option.
Top students chose the correct answer over 70% of the
time, and when they did not, were equally likely to
choose distracter B (the idiomatic answer) and distracter
E (none of the above). They almost never selected A or C.
In quartiles 2-4, the correct answer is no longer the most
popular. In quartile 2, it is approximately tied with
distracters B and E; in quartile 3, distracters B and E are
more popular than the correct answer, but B (the
idiomatic answer) is still the most popular); and in the

fourth quartile, distracter E (none of the above) is the
most popular choice.
It appears that most students understand the assignment
operator, but it’s not unusual for them to assume that the
index is incremented in the usual place, at the end of the
loop body.
This question does not in itself seem much more difficult
than the others. Some students may have given up
because they didn’t get Question 11 (although this
question could probably be answered without reading
Question 11). Because of the continuation, Question 12
appears to require more reading than the rest. A number
of students were misled by the fact that the array index is
incremented at the beginning of the loop body. Notably,
this is the only question that contains a “none-of-the-
above” choice, and that may have misled students: the
very fact that they hadn’t seen that choice before might
make it more significant. And it might just be that
students were tired by this point in the test. At least one of
the transcripts indicated that by this point, the student had
lost concentration and was simply guessing.

