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ABSTRACT 
A study by a ITiCSE 2001 working group ("the McCracken Group") established that many students do not know how to 
program at the conclusion of their introductory courses. A popular explanation for this incapacity is that the students lack the 
ability to problem-solve. That is, they lack the ability to take a problem description, decompose it into sub-problems and 
implement them, then assemble the pieces into a complete solution. An alternative explanation is that many students have a 
fragile grasp of both basic programming principles and the ability to systematically carry out routine programming tasks, 
such as tracing (or “desk checking”) through code. This ITiCSE 2004 working group studied the alternative explanation, by 
testing students from seven countries, in two ways. First, students were tested on their ability to predict the outcome of 
executing a short piece of code. Second,  students were tested on their ability, when given the desired function of short piece 
of near-complete code, to select the correct completion of the code from a small set of possibilities. Many students were 
weak at these tasks, especially the latter task, suggesting that such students have a fragile grasp of skills that are a pre-
requisite for problem-solving. 
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1. INTRODUCTION 
Despite the best efforts of teachers in our discipline, many 
students are still challenged by programming.  A 2001 
ITiCSE working group (the “McCracken group”) 
assessed the programming ability of a large population of 
students from several universities, in the United States 
and other countries [McCracken, 2001]. The authors 
tested students on a common set of programming 
problems. The majority of students performed much more 
poorly than expected.   In fact, most students did not even 
get close to finishing the set task. The results are 
compelling, given the multi-national nature of the 
collaboration. Whereas a similar report from an author at 
a single institution might be dismissed as a consequence 
of poor teaching at that institution, it is difficult to dismiss 
a multinational study. 

While the work of the McCracken group has highlighted 
the extent of the problem, the nature of the McCracken 
study does not isolate the causes of the problem. A 
popular explanation for the poor performance of students 
is that they lack the ability to problem-solve. The 
McCracken group defined problem-solving as a five step 
process: (1) Abstract the problem from its description, (2) 
Generate sub-problems, (3) Transform sub-problems into 
sub-solutions, (4) Re-compose, and (5) Evaluate and 
iterate. However, there are other potential explanations 
for why students struggle to program. For example, 
students may simply not understand the programming 
constructs they need to produce a program (e.g. arrays or 
recursion). Another and more subtle explanation is that 
the student’s knowledge is “fragile”. That is, while a 
student may be able to articulate particular items of 
knowledge when explicitly prompted for any of them, 
when that student is asked to apply that knowledge in a 
program writing context, the student “sort of knows, has 
some fragments, can make some moves, has a notion, 
without being able to marshal enough knowledge with 
sufficient precision to carry a problem through to a clean 
solution” [Perkins and Martin, 1986, p. 214]. In this 
paper, we use the term “fragile knowledge” to also 
include basic skills, such as the ability to systematically, 
manually execute (“trace”) a piece of code.    

As Perkins and Martin point out, general problem solving 
and knowledge are not “two independent dimensions of 
programming” [p. 226]. Nor is the comprehensive 
acquisition of programming knowledge and skills an 
absolute precursor to manifesting the ability to problem-
solve. However, some minimal grasp of programming 
concepts and associated skills is required before a student 
can manifest problem-solving skills in the strong five-step 
sense as defined by the McCracken group. These 
considerations led us to ask the following question: to 
what degree did students perform poorly in the 

McCracken study because of poor problem solving skills, 
or because of fragile knowledge and skills that are a 
precursor to problem-solving? 

This paper is the report of an ITiCSE 2004 working 
group, which explored the above question by asking 
students to demonstrate their comprehension of existing 
code. If a student can consistently demonstrate an 
understanding of existing code, but struggles to write 
similar programs, then it may be reasonable to conclude 
that the student lacks the skills for problem-solving. 
However, if a student cannot consistently demonstrate 
understanding of existing code, then such a student’s 
difficulty is a lack of knowledge and skills that are a 
prerequisite for non-trivial, five-step, problem-solving.  
The data for this working group was collected by asking 
students to answer twelve Multiple Choice Questions 
(MCQs). The complete set of MCQs is given in appendix 
A. In that appendix, the programming code is given in 
Java. However, the questions are intended to test student 
knowledge and skills for generic, iterative processes on 
arrays, and therefore can be easily translated into many 
programming languages. Within the working group, one 
participating institution translated the MCQs into another 
programming language, which was C++.   

In this study, we used MCQs as the vehicle for studying 
the students for two reasons. First, since this is a multi-
institutional study, we wanted a way of scoring student 
performance on the MCQs that did not require subjective 
judgment on the part of each working group member. 
Second, we were concerned that if students were instead 
required to explain the function of a piece of code, poor 
performance might be due to a lack of eloquence, not a 
lack of understanding of the code (especially where the 
student was being interviewed in a language other than 
their first language). 

 

2. DATA COLLECTION 
While answering the 12 MCQs, students provided three 
types of data, described in the next three subsections. 

2.1 Performance Data 
The purpose of collecting this data was to gauge the 
difficulty of the MCQs across all participating 
institutions.   

Each working group member tested students on the 
twelve MCQs, under exam conditions. The primary data 
collected was the students’ answer for each MCQ, from 
which a score out of 12 could be calculated. A total of  
941 students contributed data to this part of the study, but 
of those students only 556 students were given all twelve 
questions.   
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Most students who undertook this performance test had 
either recently completed, or had nearly completed, their 
first semester of studying programming. However, at 
several institutions, many students were not in the first 
semester of their studies, or even their first year. 

In some institutions, the MCQs were used as part of the 
procedure for assigning a final grade to the students. In 
other institutions, students volunteered to be part of the 
study. 

2.2 Interview Transcripts 
The purpose of collecting this data was to investigate how 
students went about answering the MCQs.   

Each of the twelve working group members interviewed 
at least three students. A total of 37 students were 
interviewed.  In the interview, students were asked to 
“think out loud” as they answered the core set of MCQs.  
The interviews were recorded and then transcribed. Some 
students were interviewed in a language other than 
English. In such cases, the final version of the 
transcription was a translation of the interview into 
English. 

In institutions where the twelve MCQs were used as part 
of the grading process, the interviews were conducted 
after the students sat for the test.  In such cases, the 
interview was a debrief, as students recollected how they 
answered each question. In other interviews, where the 
MCQs were not part of the grading process, students saw 
the questions for the first time at the interview. Their 
choice of answer for each MCQ was  also included in the 
performance data discussed in section 2.1. 

Of the interviewees, the median age was 20 years, 
ranging from 18 to 54 years. Ten percent were female. 
The average number of years at their respective 
institutions was 1.4 with a standard deviation of 0.9. Most 
students were in their first programming course. The Java 
students had been studying programming for an average 
of  0.45 years, C++ students an average of  0.3 years. 

2.3 Doodle Data 
The purpose of collecting this data was to investigate how 
students went about answering the MCQs.   

Students were given “scratch”  paper upon which they 
were allowed to draw pictures or perform calculations as 
part of answering the MCQs. Within the working group, 
such drawings and calculations are referred to as 
“doodles”. Usually, a student was allowed to doodle on 
the same page upon which the MCQ was given to the 
student.  

Doodles were collected from all 37 students who were 
interviewed. At some institutions, doodles were also 
collected from students who supplied performance data. 

3. PERFORMANCE DATA ANALYSIS 
This section contains a statistical analysis of the 
performance data, without any detailed reference to the 
transcript or doodle data.   

Figure 3.1 shows a histogram of scores (out of 12) of the  
556 students who were given all twelve questions.  The 
scores cover the complete range, from 0 to 12, with a 
mode of 8. Table 3.1 shows the quartile boundaries for 
these students. These quartile boundaries are used 
extensively in this section’s analysis of the performance 
data. 
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Figure 3.1. Distribution of scores for students who were 
given all 12 MCQs (N=556). 
 

Quartile Score 
Range 

No. of  
Students 

Percent of 
Students 

1st “top” 10 - 12 152 27% 
2nd   8 -   9 135 24% 
3rd   5 -  7 142 25% 
4th “bottom”   0 -  4 127 23% 

Table 3.1. The quartile boundaries for students who were 
given all 12 MCQs (N=556). 
 

Quartile Score 
Range 

No. of 
Students 

Percent of 
Students 

1st “top” 10 - 12 46 20% 
2nd   8 -   9 56 25% 
3rd   5 -  7 60 26% 
4th “bottom”   0 -  4 66 29% 

Table 3.2. The quartile boundaries for students who were 
given all 12 MCQs, from all but one institution (N=228). 
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A single institution contributed over half the performance 
data summarized in Table 3.1. (The next largest 
contribution by a single institution was 11%. Six 
institutions contributed data for all 12 MCQs from at least 
20 students.) There is therefore the possibility that the 
quartile boundaries in Table 3.1 are influenced unduly by 
the students of the institution that contributed over half 
the performance data. Table 3.2 shows a breakdown of 
student numbers, by the quartile boundaries established in 
Table 3.1, but excluding students from the institution that 
contributed the majority of the performance data. Table 
3.2 shows that the percentage of students from all other 
institutions in the top quartile is lower (20% compared 
with 27% in Table 3.1) and the percentage of students in 
the bottom quartile is higher (29% compared with 23% in 
Table 3.1). The percentage of students in the middle two 
quartiles is nearly the same.  On the basis of this 
comparison, and for the purposes of this study, we 
conclude that the student performance statistics are 
influenced but not dominated by that single institution. To 
the extent that the performance statistics are influenced by 
that single institution, the effect is to increase the scores 
of students in the total population. 

The above performance statistics are not as strikingly bad 
as the performance figures in the McCracken study, 
where over  half the students did very poorly.  We 
expected the distribution of performance in our study to 
be better than the distribution in the McCracken study, 
given our assumption that the ability to read and 
understand small pieces of code is a prerequisite skill for 
five-step problem solving. However, it is difficult to 
ascertain what is a “good” score on the 12 MCQs without 
first studying those MCQs.  For that reason, the next two 
subsections each examine a specific MCQ. A similar 
analysis of the remaining ten MCQs is given in appendix 
B. Subsequent subsections examine statistical data across 
all twelve MCQs.   

3.1 Question 2: A Mid-Range MCQ 
Figure 3.2 contains an MCQ, Question 2 from the 
complete set of 12 MCQs. It was answered correctly by 
65% of all students who attempted it, and is a question of 
mid-range difficulty in the set of 12 MCQs. 

At first glance, Question 2 might appear to count the 
number of common elements in both arrays, which is 3 
(choice A). However, on closer inspection of the code, it 
can be seen that the elements at position 0 in the arrays 
are not counted, so the correct answer is 2 (choice B).  
Ignoring the first element of an array is not idiomatic – 
it’s not what many programmers might expect – but it 
may be correct. For example, the first element of an array 
in C or C++ is sometimes used to store the length of the 
array, rather than an element of the array. Also, many 
bugs are caused by the fact that the code we write does 

not always do what we intended it to do, so the ability to 
read what the code actually does, rather than what we 
think it should do, is an important programming skill. 
Irrespective of whether Question 2 is a piece of code that 
a teacher should show their class, it is certainly a piece of 
code that a student might write and need to debug. 

MCQs are a common way of testing students in many 
disciplines, and there is considerable body of literature 
devoted to the construction and analysis of such tests 
[Ebel & Frisbie, 1986; Linn & Gronlund, 1995; 
Haladyna, 1999]. A common  way of analyzing the 
effectiveness of a MCQ is based upon the notion that 
MCQs should be answered correctly by most strong 
students, and incorrectly by most weak students. For 
Question 2, approximately 90% of students in the first 
quartile (i.e. students who scored 10-12 on all 12 MCQs) 
answered this question correctly, whereas approximately 
30% of students in the bottom quartile (i.e. scored 0-4 on 
all 12 MCQs) answered this question correctly. (Note that 
a student who understands nothing about the question, 
and simply guesses, stands a 25% chance of guessing 
correctly, while a student who can eliminate one option 
stands a 33% chance of guessing correctly.)  On the basis 
of these two percentages for the top and bottom quartiles, 
this MCQ does distinguish between stronger and weaker 
students. 

A similar but more comprehensive quartile analysis of 
Question 2 is given in Figure 3.3. This type of figure is an 
established way of analyzing MCQs [Haladyna, 1999]. It 
shows the performance of all four student quartiles, and 
also summarizes the actual choices made by students in 
each quartile. The horizontal axis represents the four 
student quartiles. The uppermost trend line in that figure 
represents choice B, the correct choice for Question 2. As 
stated earlier, approximately 90% of students in the first 
quartile chose option B. The percentage of students who 
chose option B drops in the second quartile, but it remains 
by far the most popular choice among second quartile 
students. For third quartile students, just over half chose 
option B, but approximately 30% of third quartile 
students chose option A. On those figures, it would 
appear that most third quartile students grasped the basic 
function of the code in Question 2, although 30% missed 
the non-idiomatic detail that the elements in position zero 
of the arrays were not counted. Among fourth quartile 
students, the correct choice was less popular than option 
A, and many students chose options C or D.  

Question 2 is not especially difficult. The first quartile 
students did very well on this question and even the 
second and third quartiles had a strong preference for the 
correct answer to the question. However it is an effective 
question for distinguishing between most students and the 
particularly weak students (i.e. fourth quartile). On the 
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basis of this question, it would seem that most students in 
the top three quartiles have a reasonable grasp of the 
concepts tested by this question (primarily arrays and 
iteration). 

One of the most challenging aspects of writing a multiple-
choice test is writing the distracters (i.e. the incorrect 
options). A good distracter should be plausible enough to 
appeal to some students. It should be clearly incorrect, 
however, so that it does not mislead those students who 
really know the material. In practice, it is difficult to write 
three good distracters. Figure 3.3 shows that distracter A 
was the most effective, whereas distracter D was not 
effective for the top three quartiles. 

To summarize the above discussion, Figure 3.3 illustrates 
two visual properties that are usually regarded as 
desirable in most such graphs of an MCQ [Haladyna, 
1999], particularly where students are being norm-
referenced (i.e. graded according to a desired distribution 
of grades). Those two properties are:  

1) The trend line for the correct answer is 
monotonically decreasing from left to right (i.e. 
from the strongest to weakest students). 

2) The trend line for each distracter is 
monotonically increasing from left to right. 

It is less clear, however, that MCQs should consistently 
exhibit these properties when students are being criterion-
referenced (i.e. tested for their mastery of certain 
knowledge and skills), which is the object of this research 
project.  The next subsection discusses a harder MCQ  
from the set of 12, which does not exhibit all the above 
“desirable” norm-referencing properties. 
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Figure 3.3. Student responses to Question 2,  by quartiles. 
 

Question 2. 
Consider the following code fragment. 
 

int[] x1 = {1, 2, 4, 7}; 
 int[] x2 = {1, 2, 5, 7}; 
 int i1 = x1.length-1; 
 int i2 = x2.length-1; 
 int count = 0; 
 
 while ((i1 > 0 ) && (i2 > 0 )) 
 { 
  if ( x1[i1] == x2[i2] ) 
  { 
   ++count; 
   --i1; 
   --i2; 
  } 
  else if (x1[i1] < x2[i2]) 
  { 
   --i2; 
  } 
  else 
  { // x1[i1] > x2[i2] 
   --i1; 
  } 
 } 

 
After the above while loop finishes, “count” contains 
what value?   
a)   3  
b)   2  
c)   1  
d)   0  
 

Figure 3.2. Question 2 from the set of 12 MCQs 
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Question 8
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Figure 3.5. Student responses to Question 8,  by quartiles. 

 

3.2 Question 8: A Harder MCQ 
Figure 3.4 contains Question 8 from the complete set of 
12 MCQs. It was answered correctly by 51% of all 
students who attempted it, the third lowest percentage for 
all 12 MCQs. The four choices given to the students focus 
on two points of the inner loop: 

1) Should the inner loop start processing at position 0 or 
at position i+1? 

2) Should the inner loop continue processing while 
j<x.length or while j<x.length-1? 

All four possible combinations of the above two options 
are given as choices, respectively:  

a) This option is wrong on the first of the above two 
points, but it is the most idiomatic of the four choices. 
That is, it is a loop where the control variable “j” 
would sweep across the entire array, which is likely to 
be the first and most common iterative process on an 
array seen by these novice programmers. 

b) This option is wrong on both of the above two points, 
but it is the option most similar to the outer loop.  

c) The correct answer. 

d) This option is wrong on the second of the above two 
points, but it does have a test condition similar to the 
test condition  of the outer loop. 

A quartile analysis of Question 8 is given in Figure 3.5. 
Approximately 80% of students in the first quartile chose 
the correct answer, option C. That option was the most 
popular with second quartile students, but distracter D 
was almost as popular, with the incorrect loop termination 
condition j<x.length-1.  Distracter D was in fact the 
most popular choice for third quartile students. Distracter 
D was the second most popular option with fourth 
quartile students; both it and the more popular distracter 
contain the incorrect loop termination condition 
j<x.length-1. In summary, the most popular 

Question 8. 
If any two numbers in an array of integers, not 
necessarily consecutive numbers in the array, are out 
of order (i.e. the number that occurs first in the array 
is larger than the number that occurs second), then 
that is called an inversion. For example, consider an 
array “x” that contains the following six numbers: 
 

4   5   6   2   1   3  
 

There are 10 inversions in that array, as: 
 

x[0]=4   >   x[3]=2 
x[0]=4   >   x[4]=1 
x[0]=4   >   x[5]=3 
x[1]=5   >   x[3]=2 
x[1]=5   >   x[4]=1 
x[1]=5   >   x[5]=3 
x[2]=6   >   x[3]=2 
x[2]=6   >   x[4]=1 
x[2]=6   >   x[5]=3 
x[3]=2   >   x[4]=1 
 

The skeleton code below is intended to count the 
number of inversions in an  array “x”: 

   
int inversionCount = 0; 
 
for ( int i=0 ; i<x.length-1 ; i++ ) 
{ 

for  xxxxxx   
{ 

if (  x[i] > x[j] ) 
++inversionCount; 

      } 
} 
 
When the above code finishes, the variable 
“inversionCount” is intended to contain the number of 
inversions in array “x”. Therefore, the “xxxxxx” in 
the above code should be replaced by: 
  
a)   ( int j=0  ; j<x.length  ; j++ ) 
b)   ( int j=0  ; j<x.length-1; j++ ) 
c)   ( int j=i+1; j<x.length  ; j++ ) 
d)   ( int j=i+1; j<x.length-1; j++ ) 

Figure 3.4. Question 8 from the set of 12 MCQs 
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distracter choice across all quartiles contained the 
incorrect loop termination condition.  

An examination of transcripts indicates that students who 
thought that j<x.length-1 was correct understood 
that the “j” subscript needed to go all the way to the end 
of the array, and they recognized that the last position of 
the array was x.length-1, but they neglected the 
effect of the  “<” symbol, effectively selecting their 
answer as if that symbol was “<=” instead. A large 
number of students made this mistake, which is surprising 
since the very next question in the set of 12 MCQs 
requires students to select another loop test condition, and 
students performed much better on that question, with 
73% of students answering it correctly. It may be that the 
students were primed to select the incorrect test condition 
in Question 8 because of the presence, in this same 
question, of the test  condition “i<x.length-1” for the 
outer loop. In one interview transcript, a second quartile 
student explicitly acknowledged that as the reason for the 
choice: “Yeah, I chose this one because it would be the 
same ….”. If this conjecture is correct – that students 
were distracted by the presence on the same page of 
another loop condition - then it highlights the fragility of 
the knowledge of many novice programmers. 

3.3 Aggregate Performance on MCQs 
Table 3.3 shows the percentage of students who answered 
each of the 12 MCQs correctly. The “Rank” column 
shows relative difficulty of each question, as defined by 
the percentage of students who answered the question 
correctly. Questions 2 and 8, which were studied in detail 
above, are ranked 6th most difficult and 3rd most difficult 
respectively. 

(At some institutions, some students were not given all 12 
MCQs. In general, those students cannot be included the 
data analysis of this paper, as much of the data analysis 
depends upon classifying each student into a quartile, 
based upon their performance on all 12 MCQs. However, 
in Table 3.3, such students were included.) 

Question 6 was ranked as the second most difficult 
question. A detailed analysis of that question is in 
Appendix B. This question involves the use of a “return” 
from within a “for” loop. From the transcripts, it is 
apparent that many students do not understand that the 
“return” will terminate the loop immediately. This 
misconception is consistent across institutions and 
countries.  

Ignoring question 6, because it involves a conceptual 
misunderstanding by students, the questions ranked 
hardest in Table 3.3 are Questions 8, 11, and 12. A 
common characteristic to these three questions is that they 
are all “skeleton-code questions.” That is, these questions 
require the student to select the correct code to complete 

given “skeleton” code. As a general rule, the easier 
MCQs are “fixed-code questions”. That is, the easier 
questions require the student to hand execute some code 
and select the outcome. Question 2 is such a fixed-code 
question. The exception to this general rule is Question 9, 
which is a skeleton code question, but which is ranked 
second easiest in Table 3.3. 

 

MCQ %correc
t 

Rank No. Students 

1 68 8/9 644 
2 65 6 644 
3 67 7 611 
4 62 5 611 
5 74 (easiest)      12 611 
6 42 2 611 
7 72 10 798 
8 51 3 798 
9 73 11 798 

10 68 8/9 644 
11 59 4 611 
12 38 (hardest)       1 611 

Table 3.3. Percentage of students who answered each of 
the 12 MCQs correctly.  
 
Finally, we note that it is possible that Question 12 
proved difficult simply because it was the final question. 
Students may have been tiring by that stage. Students for 
whom this test was a significant determinant of their final 
grade may have had the motivation to overcome such 
tiredness. However, students for whom the test counted 
for little or nothing would have had low motivation to 
overcome tiredness. 

3.4 Relative Performance Across Institutions 
At the heart of any multi-institutional study is the 
assumption that data collected at different institutions can 
be compared in  some meaningful way. Inevitably, 
however, there will be differences between the 
institutions, both in the nature of the institutions and 
details of how the data is collected. In this study, 
differences included:     
1) Student ability. Clearly, some institutions attract 

students with a greater innate talent for programming. 
2) Student experience.  Most students who provided 

performance data were at or near the end of their first 
semester of programming, but the total population of 
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students ranged from the middle of the first semester 
to the end of the third semester.  

3) Student motivation:  At some institutions this test had 
an impact on course grades, to varying degrees; at 
others, participating students were volunteers. 

4) Programming language:  In one institution, the Java 
code in the MCQs was translated into C++. 

5) Modality of test: At one site the test was taken on a 
computer, at the others it was taken on paper. 

6) Formatting of exam: Some researchers reformatted the 
questions to match the indenting style used in their 
classes.  Also, one researcher prepared multiple 
versions of the questions, with the options of each 
MCQ reordered, to deter copying. 

Figure 3.6 displays the variation in student performance 
across institutions, but also shows some general trends 
common to institutions.  This figure effectively breaks 
down the information supplied in Table  3.3 according to 
institution, showing the percentage of students who 
answered each question correctly. However, Figure 3.6 
only shows a subset of the data from Table 3.3, the subset 
comprising the 6 institutions that provided performance 
data for at least 20 students, where all those students were 
given the full 12 MCQs. Figure 3.6 highlights that, on any 
given question, the percentage performance varied 
considerably between institutions. However, some clear 
trends across questions are common to most of the 
institutions. For example, questions 6, 8, and 12 stand out 
as being difficult questions at most of the institutions. 
One of the institutions in Figure 3.6 runs contrary to the 
general trend of most other institutions shown on that 
figure.  This is the institution with a particularly low 
percentage on question 4. Students from this same 
institution performed relatively well on harder questions, 
8, 11 and 12. There are three possible contributing factors 
to the unusual performance of this institution. First, this 
institution contributed data from 20 students, the 
minimum for inclusion in that figure. Therefore data from 
that institution is more prone to variation due to small 
sample size. Second, those students were in their first 
semester of Java programming, and were taught Java 
“objects early”, which may have not prepared them well 
for questions about iterative processes on arrays.  Third, 
inspection of transcripts for this institution reveals that 
these students had studied, or were studying in parallel, 
algorithms in a language independent context, and they 
recognized some of the latter MCQs as being very similar 
to algorithms they had studied. If we ignore that 
institution in Figure 3.6, trends are even more apparent 
across institutions.  
As explained in an earlier section, one institution 
contributed more than half of the performance data for 

students given all 12 MCQs. In Figure 3.6, that institution 
is represented by diamonds, and follows the same trends 
as most of the other institutions. 
On the basis of the analysis in this sub-section, as 
illustrated in Figure 3.6, we conclude that there are trends 
in the data across institutions. In general, a question that 
is substantially more difficult for students at one 
institution is also more difficult for students at other 
institutions.  
 

3.5 Performance Across Quartiles 
Table 3.4 shows the percentage of students with the 
correct answer for each question, broken down by 
performance quartile. The rightmost column of that table 
shows the average percentage performance across all 
questions for each quartile. In other columns, those 
numbers in bold and underlined are the percentages 
below the average for that quartile. As with earlier data 
analysis, questions 6, 8, and 12 stand out as being 
particularly difficult questions; here we see that they are 
relatively difficult for students in all performance 
quartiles. 
Question 11 is interesting in that the middle two quartiles 
performed below their respective averages on this 
question. However, the difference in performance on this 
specific question and the overall average performance is 
no more than 4% for all four quartiles, so the relatively 
poor performance of the middle two quartiles needs to be 
treated with caution. 
 

3.6 Familiarity with MCQ Exams 
Most institutions do not grade programming students by 
MCQs. The most common grading practices are to ask 
students to write code, or explain in words what a piece 
of code does. The question therefore arises as to whether 
the students who participated in this study were not well 
prepared for the task required of them.  
The MCQs used in this study were provided by one 
participating institution, where students at the end of their 
first semester of programming pass or fail that 
programming course on the basis of a MCQ exam. In the 
remainder of this subsection, we shall refer to this 
institution as the “base” institution, and all other 
institutions as the “satellite” institutions. Students at the 
base institution are routinely given a pool of practice 
MCQs several weeks prior to the grading exam. These 
students are therefore well prepared (and highly 
motivated) to do well on the type of MCQs used in this 
study. The performance of students on the 12 MCQs at 
the base institution are in Table 3.5. The remainder of this 
section compares the data in that table with the data from 
satellite institutions. 
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Figure 3.6.  Percentage of students with the correct answer for each question, for the 6 institutions  that provided 

performance data for at least 20 students, where those students were given all 12 MCQs.  Each trend line corresponds to one 
institution. 

 

       question 
quartile 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Average, 
all 

questions 

Top (10-12) 93 87 99 90 99 74 95 81 98 93 89 73 89 
Second (8-9) 79 76 81 73 93 50 82 47 86 81 67 31 70 
Third (5-7) 50 56 62 52 72 28 61 30 67 65 46 18 50 
Bottom (0-4) 35 28 25 25 21 14 31 20 32 21 27 13 24 

All quartiles 65 63 68 61 73 43 69 46 72 67 58 35 60 

Table 3.4.  Percentage of students with correct answer for each question, by performance quartile.  
 

 
Question No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

Percentage 84 79 55 69 80 42 78 63 76 80 69 67 

Table 3.5.  Percentage of students with correct answer for each question, at the “base” institution where the MCQs were 
written. Percentages in bold and underlined are outside the range of percentages across the other institutions in Figure 3.6. 

 
In Table 3.5, the four percentages in bold and underlined 
are outside the range of percentage figures across the 
satellite institutions in Figure 3.6.  In all four cases, the 
percentage for base students in the table is higher than the 
percentages for satellite students  in the figure.  
Questions 1 and 2 were answered more poorly by satellite 
students than by the base students, which may indicate 
that satellite students took a couple of questions to  

 
become familiar with what was required of them in this 
test.  
A striking difference between Tables 3.3 and 3.5 is the 
different percentage of students who correctly answered 
Question 12. At the base institution, 67% of students 
answered that question correctly, compared with only 
38% at the satellite institutions. At the base institution, a 
minor variation on Questions 12 was part of a pool of 
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practice questions given to the students. Therefore, 
students at the base institution could be expected to do 
better on this question.  
We conclude that unfamiliarity with MCQ exams was not 
a major impediment for students at satellite institutions. 
We suspect that, had the students at satellite institutions 
also had access to an extensive pool of practice questions 
prior to attempting these 12 MCQs, then their 
performance may have been a little higher, but not 
substantially higher. 
 (We end this subsection with the following passing note 
of clarification. The base institution provided data for all 
12 MCQs from only three students. With the exception of 
Table 3.3, data analysis in this paper concerns students 
who completed all 12 MCQs. Therefore, the data from the 
base institution cannot inject a large bias into the data 
analysis.) 
 

3.7 Reliability 
There are established methods in the educational 
literature for evaluating the “reliability” of a test.  
Reliability has a fairly narrow meaning here:  a test is 
reliable if it would discriminate consistently between 
students, based on partitioning the questions, grading the 
partitions, and seeing if the results agree.  Therefore 
reliability tests are based upon the assumption that all 
questions in a MCQ exam test the same knowledge and 
skills. We computed Cronbach's coefficient alpha (Ebel 
and Frisbie, 1986), which provides the average 
correlation between scores of all possible two-group 
partitions of the questions.  Using the data for students 
who were given all 12 MCQs (N=556), we obtained a 
value of 0.75.  By convention, a value of 0.80 or higher is 
considered "reliable". In the set of 12 MCQs used in this 
study, Questions 6, 8, and 12 (one quarter of the complete 
set of questions) stand out as being relatively difficult 
questions. Therefore it is not surprising that the reliability 
of the complete set of 12 MCQs falls a little below the 
conventional threshold of 0.80. 
 

3.8 Time Taken To Do The Twelve MCQs 
It is possible that some students performed poorly on 
MCQs late in the complete set of 12 because they were 
running out of time. The time to be given to students to 
complete the exam was not specified as part of the 
experiment design, beyond the advice to participating 
institutions that students should be given at least an hour 
to do all 12 MCQs. 
Time-duration data was collected for 339 of the students 
who were tested on all 12 MCQs. Most of this time data 
came from the institution that contributed the majority of 
performance data, where no upper time limit was given to 

students. Half the students took between 30 and 60 
minutes to answer all 12 questions. That is, 75% of all 
students completed the 12 MCQs in under an hour. The 
longest time taken by a student in the first performance 
quartile (i.e. score of 10-12) was 105 minutes. The 
longest time by any student was 115 minutes, by a student 
in the third performance quartile (i.e. score 5-7). The 
distribution of times to complete the 12 MCQs was 
similar across the top three performance quartiles. 
Students in the bottom quartile tended to be  quicker. Half 
of the bottom quartile students  took between 20 and 50 
minutes to answer all 12 questions, with the longest 
taking 65 minutes.  
 

3.9 Performance Data Discussion 
Students who fall within the bottom performance quartile, 
scoring 0-4 out of 12, probably suffer from problems 
more fundamental than an inability to problem-solve. 
Students who fall within the top quartile probably have a 
strong grasp of the basics of programming.  If top quartile 
students manifest a subsequent weakness in writing code, 
then they probably do suffer from a weakness in problem 
solving. 
Having categorized the top and bottom quartiles, there 
remains the harder task of making observations about the 
middle 50% of students, who scored between 5 and 9.  It 
is sobering to consider the following hypothetical 
argument. Suppose the students who participated in this 
study were all studying their first semester of 
programming at a single institution. Suppose further they 
were given these 12 MCQs as their exam, and the 
institution regarded a 25% failure rate as the upper limit 
of what was acceptable. Then students who scored 5 out 
of 12 on these MCQs would be progressing to the second 
semester programming course. In the view of the authors, 
students scoring 5 out of 12 on these MCQ’s probably do 
not have the level of skill and knowledge needed for a 
follow on course. The authors leave the readers to decide 
their own acceptable passing score on these 12 MCQs, 
and to calculate the resultant failure rate for this 
hypothetical class. 
One observation we make about the middle 50% of 
students is that, by virtue of the fact that they answered 
some questions correctly, they have demonstrated a 
conceptual grasp of loops and arrays. Therefore, the 
weakness of these students is not that they do not 
understand the language constructs. Their weakness is the 
inability to reliably work their way through the long chain 
of reasoning required to hand execute code, and/or an 
inability to reason reliably at a more abstract level to 
select the missing line of code. Based on the performance 
data, it is not possible to draw any firm conclusions as to 
the exact cause of this weakness. To explore that issue 
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further, the remainder of the paper examines the other 
data gathered in this project, the doodle data and the 
interview transcripts. 
 

4. DOODLES 
When faced with a piece of code to read and understand, 
experienced programmers frequently “doodle”. That is, 
they draw diagrams and make other annotations as part of 
determining the function of the code.  
Figure 4.1 shows the actual annotations made by a 
student while correctly choosing option “c” (as indicated 
by the circle around that option) for Question 1. (Recall 
that, as shown in Table 3.3, this question was answered 
correctly by 68% of all students, thus ranking it as one of 
the easier MCQs used in this study.) Above the first line 
of Java code in Figure 4.1, where array “x” is initialized, 
the student has annotated the various positions of the 
array. In this study, we refer to that as a “position” doodle 
(or just “P”).  Above the test condition of the “while” 
loop, the student has written the values of the variables. 
In that test condition, as the variables “sum” and “i” 
changed, the updated values were written alongside the 
old value.   We refer to this as a “number” doodle (”N”).  
Above and to the right of the test condition, the student 
has written the changing values in several Boolean 
expressions, such as “0 < 3” and “2 < 3”. This is an 
example of a “trace” doodle (“T’). Under the statement 
“sum += x[i];”, the student has written a "computation" 
doodle (“C”), “sum = 1 + 4 = 5”. Near the four options, 
the student has written “sum = 0” and “i = 0” to record 
the value in these two variables;  those are further 
examples of “N” doodles. At the lower right is a table, 
with a header row containing “sum”, “lim”, “i”, and 
“len”. As the student hand executed the code, and the 
variables listed in the header row of that table changed 
value, the new values were entered into the table. This is 
an example of the most elaborate type of doodle 
identified in this study, the “synchronized trace” (“S”).  
 

4.1 Categorizing Doodles 
In this study, we analyzed the doodles of 56  students, 
consisting of all 37 students who were interviewed, plus 
others chosen at random from all participating 
institutions.  Two authors of this study jointly went 
through the pages collected from these students, and 
developed a draft set of doodle categories.  
After the two authors had devised the draft categories, 
three other authors then separately went through a subset 
of the same pages examined by the first two authors, and 
counted the frequency of occurrence of each type of 
doodle, as defined in the draft categorization. The 
frequencies of each of these three authors were compared 

to the frequencies obtained by the first two authors. In all 
three cases, the discrepancy was approximately 10%. 
Some of the discrepancies were caused by an author 
simply missing a doodle, while others occurred because 
the explanations of the categories were not clear enough. 
The explanations were re-written to clarify the categories, 
and produce the final draft of doodle categories. 
Table 4.1 contains the final draft of doodle categories, 
giving all types of doodles identified in this study.  Note 
that any mark on a question paper is considered a doodle, 
other than the indication of the multiple choice option 
chosen.  Also, note that a single MCQ answered by a 
student may have several doodle categories assigned to it, 
as would be the case for the question shown in Figure 4.1. 
 

4.2 Doodle Category and Answer Accuracy  
An obvious issue to consider is the effectiveness of each 
these doodle categories for answering the MCQs. To 
investigate that question, we analyzed the doodles of the 
56 students on all 12 MCQs, as follows. For each doodle 
category, we calculated the percentage of questions 
answered correctly using that doodle (as a percentage of 
all questions where that doodle category appeared). Those 
percentages are given in Table 4.2. The “Data Points” 
column in that table indicates the total number of 
occurrences of each doodle type.  The maximum number 
of possible data points for each doodle type is 56 students 
× 12 MCQs = 672.  
Not surprisingly, Table 4.2 indicates that, if a student 
carefully traces through the code (S, T, or O), thus 
documenting changes in variables, the likelihood of 
getting the correct answer is high. In contrast, not 
doodling (B) only leads to the correct answer 50% of the 
time. While these statistics will surprise few teachers, 
these are very useful statistics for teachers to quote to 
their students.  
Note that a student may use more than one doodle 
category to answer a question. Therefore some categories, 
which have little to do with actually determining the 
correct answer, may appear in conjunction with another 
doodle category that is primarily responsible for 
answering the question (e.g. The position doodle by itself 
is unlikely to lead to a correct answer).   This may also 
explain the 100% success of the Keeping Tally doodle 
(K). In any event, the number of data points for the 
keeping tally doodle is too low to be considered 
significant.
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Figure 4.1 A student’s doodles for Question 1 
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Code Name Description Examples 

A Alternate Answer Student changed their answer to this question c. 
d. 

B Blank Page No doodles for this question  
C Computation An arithmetic or Boolean computation. Rewriting a comparison 

was not counted as a computation (see N). 
3 + 5 

3==5 false 

E Extraneous Marks Markings that appear meaningless or are ambiguous (i.e. could not 
be definitively characterized by researcher).  Includes such things 
as: circled array elements; meaningless arrows; dots on the page, 
miscellaneous crossed out numbers, etc.) 
Does not include a crossed out copy of a trace (an obvious re-do 
of the trace) 

 
.  -  | 

 

K Keeping  Tally Some value being counted multiple times (specific variable not 
indicated) 

||||| 
||||| 

N Number Shows value of a variable.  Most frequently in a comparison.  
Distinct from S or T below. Values characterized as numbers were 
associated with variables whose values didn’t change in the code 
fragment. 

  0   5  
 sum<limit 

- or - 
x.length 6 

O Odd Trace Odd kind of trace (i.e. used arrows, couldn’t be characterized as 
either S or T below) but appeared to be a trace. Consistent with 
the example given here, these doodles may be pictorial 
representations of arrays,  “before” and “after” operations on the 
array.  

   0 1 2 
    / / 
   1 2 

P Position Picture of correspondence between position (index) of array 
element and value of element 
Note:  in example, top row is indices, bottom row is printed array 
as shown as question paper 

 
       0 1 2 3 
x={2 4 6 8} 

S Synchronized 
Trace 

Shows the values of multiple values every time one of them 
changes. Essentially a table. In some cases, students also devote 
table columns to “variables” that do not change during the 
execution of the given code. 

   i | sum 
   0 |  0 
   0 |  3 
   1 |  3 

T Trace Shows the values of a variable (not necessarily in table form) as it 
changes (i.e. shows more than 1 value for at least 1 variable) 

- or - 
a variable’s value has been overwritten with a new value 

i1 = 1 2 3 4 
- or - 

i1 = 1 
i1 = 2 

- or - 
i1 0 1   

U Underlined Some part of the question was either underlined or shaded for 
emphasis by student 

 

X Ruled out One or more alternative answers were crossed out so that answer 
appeared to be selected by elimination. 

 

Table 4.1. Categorization of Doodles 
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Doodle Category  %Correct Data Points 
Keeping Tally (K) 100 6
Odd Trace (O) 78 23
Synchronized Trace (S) 77 73
Trace (T) 75 215
Alternate answer (A) 69 26
Position (P) 64 75
Number (N) 70 189
Computation (C) 60 30
X-ruled out (X) 60 60
Extraneous marks (E) 57 89
Underlined (U) 52 44
Blank Page (B) 50 256
Table 4.2: Percentage of correct answers when students 
(N=56) use a particular doodle type. 
 

4.3 Blank Page Doodles 
One category in Table 4.1 is the “blank page” doodle 
(“B”) which, in fact, indicates that there were no doodles 
for that question. Given the propensity of experienced 
programmers to doodle, it would be reasonable to expect 
that novice programmers do likewise, but this is not 
always the case. For example, Thomas, Ratcliffe, and 
Thomasson  (2004) have described their experiences with 
encouraging students to doodle. They report that, when a 
student approaches an instructor with a problem, the 
student is “often impatient when the instructor resorts to 
drawing a diagram, then amazed that the approach works” 
[p. 250].  They also report that, on one occasion when 
they tested students, and they provided each student with 
a piece of paper upon which the student was free to 
doodle, almost two thirds of the returned pages were 
blank.  
In this study, of the 56 students for whom doodle data 
was examined, one fifth of them did not make any 
doodles (B) while answering Question 2, and over half 
(55%) did not doodle for Question 8.  These relative 
doodling rates for Question 2 and 8 appear counter-
intuitive. Unlike the novices in this study, anecdote 
suggests that experienced programmers habitually doodle 
when trying to understand a difficult piece of code. 
Question 2 is easier than Question 8, but the students we 
studied are less inclined to doodle for the harder question. 
(This issue is addressed further in the discussion of the 
Question 8 transcripts.) 
Davies (1996) reports that, when writing programs, 
experts make extensive use of external records to manage 

information, whereas novices rely heavily upon their  
short-term working memory. From this working group 
study, it would seem that novices also rely heavily on 
their short-term working memory when attempting to 
trace code. 
The actual frequency of blank doodles for Question 2 and 
8 is likely to be an underestimate of the general lack of 
effective doodling.  It would seem unlikely that any 
student who merely used the position doodle, and perhaps 
some of the other doodle categories, achieved any 
advantage in answering Questions 2 and 8.  Therefore, 
the percentage of students who made no effective doodle 
is probably even higher for Questions 2 and 8.   
There are three possible explanations why a student could 
answer a MCQ with a “B” doodle: 
1) The MCQ is relatively simple.  
2) The student has internalized a sophisticated reasoning 

strategy for answering that type of MCQ. 
3) The student is either guessing, or has heuristics for 

selecting a plausible answer without genuinely 
understanding the MCQ, which is essentially an 
educated guess.   

Given the high difficulty of Question 8, it seems unlikely 
that the first of the above explanations is plausible. An 
assessment of the other two explanations requires a closer 
look at transcript data, which is done in the next section. 
 

5. TRANSCRIPTS 
Having seen the student performance data, and having 
seen their doodling patterns, this section throws light 
upon that earlier analysis by an examination of the 
interview transcripts. Whereas the other sections were 
primarily quantitative, this section is primarily qualitative. 
 

5.1 Walkthroughs 
In the following examination of the transcripts, there is 
frequent reference to “walkthrough”. We use this term to 
describe any transcript for a question where the student 
hand executes the code in meticulous detail.   Figure 5.1 
contains a walkthrough for Question 2. 
Perkins et. al (1989) refer to walkthroughs as “close 
tracking”. They note that, while close tracking is an 
important skills for diagnosing bugs, it is mentally 
demanding, and therefore many students do not track 
their code carefully. Perkins et. al. also note that bugs are 
frequently overlooked during tracking because the student 
projects their own intentions onto the code. 
The transcript analysis in this section was done entirely 
separate from the doodle analysis. It seems plausible that 
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a  walkthrough in a transcript is evidence for a detailed 
style of doodling, but we have not investigated that 
connection. 
 

5.2 Higher Level Reasoning 
There is an extensive literature on mental models for 
programmers, where programs are represented at a level 
higher than the code itself. Much of that literature focuses 
upon the concept of a schema [Soloway and Ehrlich, 
1984; Rist, 1986 & 2004; Detienne, 1990]. Schemas are 
an abstract solution to a programming problem, that can 
be applied in many situations. Closely related concepts 
including “plans”, “templates”, “idioms”, and “patterns” 
[Clancy and Linn, 1999]. 
Much of the literature on schema focuses upon the 
writing of programs, but schema are also used in models 
of program comprehension. In some models of reading, 
comprehension is a “bottom-up” process, where elements 
of the text suggest the schema that may have been used 
by the author of the program. Some other models are 
“top-down”, where schema suggest elements to look for 
in the program text. Other models allow a mix of 
“bottom-up” and “top-down” processes. Schema models 
correctly predict that an expert programmer will 
understand/memorize more quickly code that conforms to 
a schema than code that does not conform [Soloway, 
Adelson, and Ehrlich, 1988]. 
Some have advocated that students should be taught 
schema explicitly [Soloway, 1986; Clancy and Linn, 
1999]. Recently, it has been advocated that students be 
explicitly taught to recognize and use ten common roles 
of variables [Kuittinen and Sajaniemi, 2004].  
The study by this working group was designed principally 
to benchmark student performance across institutions and 
countries.   The design of the study does not lend itself to 
a detailed analysis of any higher-level comprehension 
strategies used by students.  The students were merely 
asked to find the correct answer to each multiple choice 
question, not articulate any higher-level reasoning 
process. However, some cautious inferences can be made 
from the transcripts. For example, if a student chooses an 
answer, without a complete walkthrough, then either the 
student has made a guess, or the student has employed 
some sort of higher-level reasoning strategy.  The 
converse, however, is not necessarily true. If a student 
employs a thorough walkthrough to find the answer, it 
cannot be inferred that the student did not make any 
higher-level inference about the code.  For example, after 
one student had chosen their (incorrect) answer for 
Question 2, via a walkthrough, the following exchange 
occurred between the interviewer and the student: 

Interviewer: “When you are doing that one you're 
stepping through the code line-by-line, did you form 
an intuitive idea as to what the program is doing?” 

Student: “Um, yeah, I knew that it would count the 
number of equal elements.  I wasn't entirely sure at a 
glance what the less-thans and greater-thans would do.” 
 
Even though a detailed analysis of higher-level 
comprehension strategies is not possible in this study 
design, the transcripts do lend themselves to an 
investigation of one important issue: whether higher-
performing students use a qualitatively different approach 
to lower-performing students. It could be that all students 
are using the same qualitative approach, but the lower 
performing students make more errors. 
 

5.3 Guessing 
Multiple-choice exams are frequently criticized as being 
answerable by guesswork.  We looked at the transcripts to 
see what evidence there was for guessing. Two forms of 
guessing were observed in the transcripts.   Students 
sometimes made an educated guess. For example, a 
student might perform an abortive walkthrough, or some 
other process, followed by a statement like “so it must be 
A or C – I’m going to guess A”.  A guess was deemed to 
have occurred when a student made a statement like “I’m 
just guessing” or “I’m completely lost, I just picked one”. 
In the transcripts, we found evidence for guessing in 10% 
of all student answers to questions, with approximately 
half of those being educated guesses and half pure 
guesses.  However, guessing rates per question vary 
widely.  We detected guessing at levels higher than 10% 
in five questions: Question 10 (30%), Question 12 (16%), 
Question 8 (15%), Question 6 (13%), and Question 9 
(12%).  We note that most of these were identified as 
difficult questions in the performance analysis. We did 
not detect any evidence of guessing for Question 7.  As 
expected, it was observed that those students who guessed 
significantly more than their peers did perform noticeably 
more poorly. 
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Figure 5.1  A complete transcript for one student as they 

correctly answer Question 2 by a walkthrough. 

5.4 Question 2 by Quartile 
Recall that Question 2 is a fixed-code question of medium 
difficulty. In this subsection, we examine student 
transcripts on that question by performance quartile. 
Of the thirty seven transcripts, twenty were set aside from 
the analysis of Question 2, for the following reasons. In 
four cases, there was either no recording or a partial 
recording for Question 2, due to errors in the use of 
equipment. In two cases, the student responses to all 12 
questions had not been recorded in the performance 
database, so the students could not be allocated to a 
quartile. In seven cases, there was either no clear 
articulation in the transcript of the answer chosen by the 
student, or there was a mismatch between the apparent 
choice of answer in the transcript and the answer recorded 
in the database (in at least one case, it is likely that the 
student verbalized one choice of answer, but marked 
down another choice on their answer sheet). In seven 
cases, the student had done the test prior to the interview, 
as part of the performance data gathering, and the 

interview was a “debrief”. That is, the interview was the 
students’ recollection of how they went about answering 
the question. 
 
5.4.1 Upper Quartile Students 
There were eight transcripts from upper quartile students.  
All students answered correctly, and all walked through 
the code meticulously.  All these students articulated their 
walkthrough with sufficient detail so that a reader of the 
transcript can follow the reasoning (as in Figure 5.1).   
While working out their answer, none of these students 
volunteered any realization of the intent of the code, to 
count the number of identical elements in the two arrays 
(in positions higher than position zero). 
 
5.4.2 Second Quartile Students 
There were five transcripts from second quartile students.  
Three students answered the question correctly. Two of 
those students answered via a meticulous walkthrough 
with the same clarity as the upper quartile students. The 
third student gave a brief and unclear walkthrough: 

“x1 is an array with four integers, x2 is an array with 
four integers.  i1 equals three and i2 equals three, i1 
and i2 are greater than nought so equal three and x1 
equals four in this statement and x2 equals five in this 
statement. i1 equals 2 and i2 equals 2 still greater 
than zero, so x1 will equal two and x2 will equal 2… 
therefore the answer will be B.” 

Of the two students who answered incorrectly, one chose 
option A. This is the option a student would choose if 
they grasped the general intent of the code, but did not 
realize that the comparison of elements in the arrays stops 
without examining the first elements of the arrays. Unlike 
the upper quartile students, this student did make explicit 
and unprovoked comments about the intent of the code. 
Early in his deliberations, the student  commented that the 
code used “meaningless variable names”. Midway 
through deliberations, he comments, “I can see that's 
what it’s doing but I do it slowly so I don’t stuff it up”. 
Having reached the incorrect decision that the answer is 
option A, he volunteers, “I can see that that was going to 
happen”, adding that the code “pretty much counts 
similar digits in the arrays”.  This student demonstrated a 
style of reading that we would like to encourage in 
students, where the student abstracts from the lower-level 
code to a higher-level schema. However, because he did 
not check carefully, he missed that the counting stops 
without examining the first positions in the arrays.  
The remaining student chose distracter C. While the 
student appeared to walk through the code, the transcript 
is brief and unclear: 

This time I'm going to look to see what the question 
wants first.  So trying to find the value of count.   So 
now I'm looking to see what each variable is set to 
and what's happening inside the program.   I'm going 
to go ahead and write down that x1's length is 4 and 
x2's length is 4.  And then e loop, 4 is greater than 0 
and 4 is greater than 0.  So inside the loop, the, 
checking to see if the ... [indecipherable] .. checking, 
noticing that I didn't subtract 1 from each of i1 and 
i2. So changing i1 to 3 and i2 to 3.  So when the 3rd 
spot, last spot of each array, they're equal, so it enters 
the first if loop so count is now equal to 1; i1 equals 2 
and i2 equals 2. Now we're going through the loop 
again. 2 is greater than 0 and 2 is greater than 0 so 
we're inside the loop. Checking the first "if" are the 
second indexes equal to each other?  no. So going to 
the else if and ‘is 4 less than 5?’, which is true so i2 is 
subtracted 1.  I2 now equals 1 and we're going back 
to the  while loop again.  2 is greater than 0 and 1 is 
greater than 0.  So checking the first if  ‘is 4 equal to 
2?’,  which is false  so checking the second  if.  “Is 4 
less than 2?’, which is false so doing the else 
statement which is subtract 1 from i1. so i1 now 
equals 1.  So going through the while loop again. 1 is 
greater than 0 and 1 is greater than 0. So checking 
the first if "is 2 equal to 2?" which is true so 
increment count by 1.  Count is now 2.  Subtract 1 
from i1  which becomes 0 and i2 which becomes 0.  
So now the while loop fails because 0 is not greater 
than 0.  So it asks for the value of count which is 2. 



135 

“There are 2 variables i1 and i2 that start at 3. Two 
arrays x1 and x2. Conditional loop which loops while 
they are both greater than zero , compares x1 and x2 
the elements at position i1 and i2 which are 3, sees if 
they are equal, which they are. It increments count 
and decrements i1 and i2, goes through loop again. 
And compares the second elements of x1 and x2, but 
this time they are different and x1 is less than x2 so 
this time it decrements i2 and goes through loop 
again. This time compares the  ..... second in x1 and 
the third in x2 and they aren’t equal and again 
decrement i2 – this time it is 0 so false so count was 
only incremented once.” 

 
5.4.3 Third Quartile Students 
There were two transcripts from third quartile students.    
Both students walked through the code, but incorrectly 
chose option A.  
One of these students failed to manage the walkthrough 
well, and twice backtracked after realizing that an error 
had been made. At the third attempt, the student failed to 
track correctly the value of the variable “i2”: 

“So first they are three, i1 and i2.  We take the sevens, 
they are equal, count becomes one.  And now they 
become 2, and then comes... yes they become twos, x1 
and x2 We take 4 and 5, go to the else-if. i2 is 
decreased by one. It becomes one. And i2 is still 2. 
And then we take the second, so 4 and 2, and go to the 
last section.  And there i1 is decreased. i1 becomes 1 
and i2 2.” 

The above transcript continues, but the error has been 
made. 
The other student demonstrated a fragile grasp of the 
difference between a position in an array, and the 
contents of that position: 

“... So I have incremented count which would be from 
0 to 1, subtract i1 and subtract i2, so they've moved 
the pointers. By “pointers”, the student means 
variables i1 and i2.    I've moved the pointers so now 
x1 pointer would be on 4 and in x2 the pointer would 
be on 5”. The student appears to mean that x1[i1] 
contains 4 and x2[i2] contains 5. However, he then 
goes on to say “... they are both equal still so, 
probably do the first one again. So count is 2”. By 
“both equal still”, the student is asserting that the 
Boolean condition x1[i1] == x2[i2] is true, which is 
not only incorrect, but contradicts what he said 
immediately before, “x1 pointer would be on 4 and in 
x2 the pointer would be on 5”. He incorrectly 
interpreted the Boolean condition as “i1 == i2”. 

Many teachers would recognize this student’s problem as 
a common one among novices, and it is also recognized 

in the literature  [du Boulay, 1989]. For this student, the 
confusion over array position versus array contents is 
more a case of fragility rather than a complete 
misconception, since the student did answer five other 
questions correctly. In fact, the student incorrectly 
answered the first four questions because of this 
confusion, before realizing his error, and went on to 
correctly answer 5 of the remaining 8 MCQs, which 
included the harder MCQs. 
 
5.4.4 Bottom Quartile Students 
There were two transcripts from bottom quartile students.    
Both students admitted to guessing.  
 
5.4.5 Accounts of Question 2 by Debrief Students 
As mentioned earlier, some transcripts were not included 
in the above quartile analysis of Question 2, because they 
were the students’ recollection of how they had gone 
about answering the question earlier. However, it is 
interesting to examine those debriefs, for insight into how 
the students view the process. The following are taken 
from the debriefs of some third quartile students, who all 
answered Question 2 correctly: 
1) “... and basically what I did is that I tried to take all 

the initial values and write them down so I wouldn’t 
lose track of what I was doing if I thought about too 
much at once.  And again I went through loops, and I 
tried to keep track of where the variables were 
changing, and I'd make a little notation on the side”. 

2) “Its the exact same type of problem in question 2, ... its 
the same way I try to solve it ... writing down the 
variables, and for every iteration ... try to figure out 
what the variables are ... its just, just a way of 
working that’s similar to using System.out.println to 
figure out the values of the variables. That’s the 
method that is used manually, I imagine. That’s 
recurring in many if these questions - its all about 
putting some numbers into your head ... follow the 
structure of the program and see what happens. And 
try to remember the numbers ... all the questions are 
more or less like question 1”. 

3) “The challenge is to keep a mental picture, keep on 
watching ... the state of the variables, depending on 
how the comparisons work out ... over all, I find them 
quite difficult ... I spend some time thinking about 
what happens in the first run through the loop what 
happens in the second and keep an eye on the 
individual ... counters ...”. 
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5.4.6 Discussion of Question 2 Transcripts 
Due to the small number of transcripts that could be 
analyzed,  no firm conclusions can be drawn. However, 
some interesting tentative observations can be made, 
which could be confirmed by collecting more transcripts. 
Most students in the top three quartiles answered the 
question by a walkthrough.  The principal difference 
between top quartile students and the other two quartiles 
is that the top quartile students were more meticulous in 
the walkthrough process, and therefore made fewer 
errors.  
Few students in any quartile reasoned explicitly at a 
higher level than the walkthrough. That is, few students 
articulated the intent of the code, to count the number of 
common elements in portions of the two arrays.  
 

5.5 Question 8 by Quartile 
Recall that Question 8 is a skeleton-code MCQ, and one 
of the harder questions in the set of 12.  In this 
subsection, we examine student transcripts on that 
question by performance quartile. 
Of the thirty seven transcripts, twenty four were set aside 
from the analysis of Question 8, for the same reasons that 
transcripts were set aside for Question 2.  
In the earlier performance data analysis, it was shown that 
distracter D was very popular with students. This 
distracter has the incorrect loop termination condition 
j<x.length-1. We therefore decided to concentrate 
our analysis on those students who first eliminated 
options A and B before deciding between either D or the 
correct option, C. 
 
5.5.1 Upper Quartile Students 
There were four transcripts from upper quartile students.  
One of these students chose option B, and another 
narrowed his choice to B and D before choosing D.  
Those two transcripts will be ignored in the rest of this 
analysis. Of the remaining two students, one correctly 
chose option C, and the other chose distracter D  
The student who answered correctly used a long 
walkthrough. Less than 10% of the way into the two-page 
transcript of the walkthrough, that student says: 

 “... So I'm just going to go ahead and trial and error.  
I'll set it equal, I'll put in the A, the A  answer. ” 

The student does that, and proceeds in a manner similar to 
that of the transcript in Figure 5.1  About 40% of the way 
through the two-page transcript, the student starts the 
walkthrough again:     

“I'm just going to start over because I didn't write 
down enough.” 

The student proceeds as before. At the turning from page 
1 to page 2 of the transcript, which is early in this second 
walkthrough, the student makes an inference about the 
code in option A: 

“Actually the problem with putting in that  code would 
be that it starts at the beginning of the array every 
time for the second value, the value of j. ... So it can't 
be A.  So now I'm trying ... but I'm not going to bother 
with B because it's starting out at the beginning of the 
array for j too.  So now I'm looking at C.” 

Early in the walkthrough of option C, the student 
becomes more confident: 

“I don't see any reason why this one shouldn't work so 
I'm going to go ahead and try the last value when i 
equals 4.  j equals 5,  so 5 is less than 6.  We go inside 
the for loop.  Is 1 greater than 3? No. So j equals 6.  6 
is not less than 6 and i would get incremented and 5 is 
not less than 5. So it seems that one would work.  I'm 
going to go ahead and try D real fast.  I see the only 
difference is that in j, in the for loop with j, the length 
is equal to, is compared to length-1. So I'm just going 
to try it real fast but I think it's going to end up 
skipping a spot.  So i is 0, 0 is less than 5, true.  j 
equals 0 plus 1, so 1.  1 is less than 5.  I'm just going 
to go ahead and skip to where j is 4.   So is 4 less than 
1? It’s true.  And j would get incremented but it would 
be 5 but that doesn't pass the for loop test so it would 
skip the last value in the array so D would not work 
...” 

In the above transcript, we see signs of an emerging 
understanding of the concept and importance of boundary 
conditions. 
The remaining student, who narrowed the choice to C and 
D before incorrectly choosing D, reasoned much more 
quickly about his choice:  

“If you try to go all way to position 6, we’ll have an 
array index out of bounds error, so want it to go to 6-
1 because that’ll be the actual array index”. 
 

It is difficult to see how students could incorrectly reason 
like this in Question 8, but go on to answer the very next 
question correctly, when it also contains a loop 
termination condition. However, as Table 3.3 shows, only 
51% of students answered Question 8 correctly, but 73% 
answered Question 9 correctly.  As we speculated earlier, 
perhaps when students are answering Question 8 they are 
distracted by the loop condition on the same page, in the 
outer loop: i<x.length-1.  
 
5.5.2 Second Quartile Students 
In the earlier performance data analysis, it was shown that 
options C and D were almost equally popular with second 
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quartile students. There were six examinable transcripts 
from these students. All six students narrowed their 
choice to option C or D, and two correctly chose C: 
1) “It has to be either C or D. Does it go until the end?  

Or doesn't it? But it really should go until the end, 
shouldn't it?  Yes, it should, so that's C.” 

2) “...so the problem is, is it x.length or x.length-1? So, 
then it goes to x.length-1. So you look at the number 
up to the second last number. The next one should 
look at every number, should look at every number 
plus the last number which is … [indecipherable] ... If 
you say x.length-1 you’re not going over two numbers 
so this is the correct answer.  C is the correct 
answer”. 

Of the four students who chose option D, one admitted to 
guessing. The explanations offered by two of the 
remaining three students for choosing option D seem little 
different from the explanations given by the students who 
chose option C: 
1) “And you need to compare until you get to the end of 

the array and the last element of the array is length-1 
...”. 

2) “... you want to go to the end of the array so that's 
x.length-1”. 

The remaining student was quoted in the paper earlier. 
This is the student who admitted to choosing option D 
because that loop condition was most like the outer loop 
condition: 

“Yeah I chose this one because I thought it would be 
the same, if your looking at the same number of values 
in here.”   

 

5.5.3 Third Quartile Students 
There were two examinable transcripts from these 
students. Both narrowed their choice to option C or D, but 
then incorrectly chose D: 
1) “The last element is like length-1 ... so then it is D.” 
2) The student reasoned that if option C was used “... it 

would sort of causes segmentation error”. 
 

5.5.4 Bottom Quartile Students 
There was one transcript from a bottom quartile student, 
and the student admitted to guessing.  
 
5.5.5 Discussion of Transcript data for Question 8 
As with Question 2,  few firm conclusions can be drawn 
about Question 8, due to the small number of transcripts 
that could be analyzed. 

In choosing between options C and D, students manifest a 
nascent ability to reason at a higher level. At this stage of 
their development, many reason incorrectly, and choose 
option D. Given that they were reasoning at a higher 
level, it is perhaps not surprising that many students did 
not doodle when they attempted Question 8.      
While students in all quartiles struggled to choose 
between options C or D, the performance data shows that 
students in the top three quartiles were consistently able 
to eliminate options A and B. Therefore, students are 
capable of some degree of analytical thinking on these 
skeleton-code MCQs. However, that many students 
struggle to correctly choose option C over D is evidence 
that these analytical skills are, at this stage of their 
development, fragile.  
 

6. GENERAL DISCUSSION 
Having looked at all the evidence available to this study, 
we now make some general observations. 
 

6.1 Reading versus Writing  
The question arises as to what relevance there is between 
the comprehension tasks studied by this working group 
and the ability of students to write code. 
Even when our principal aim is to teach students to write 
code, we require students to learn by reading code. In our 
classrooms we typically place example code before 
students, to illustrate general principles. In so doing, we 
assume our students can read and understand those 
examples.  When we exhort students to read the textbook, 
we assume that students will be able to understand the 
examples in that book.  
Perkins et. al (1989) claim that the ability to  perform a 
walkthrough is an important skill for diagnosing bugs, 
and therefore the ability to review code is an important 
skill in writing code.  Soloway (1986) claims that, among 
many other abilities, skilled programmers carry out 
frequent “mental simulations”, of both abstract designs-
in-progress and code being enhanced, as a check against 
unwanted dynamic interactions between components of 
the system. He argues that such simulation strategies 
should be taught explicitly to students.  Many of our 
teaching traditions date back to the era of punch cards. In 
the days of overnight batch runs, there was little need to 
explicitly encourage students to carefully check their code 
before submitting it for a batch run, as a careless error 
could waste a whole day. In an era where the next test-run 
is only a mouse-click away, we need to place greater 
explicit emphasis on mental simulation as part of the 
process of writing code.  
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Wiedenbeck [1985] found that expert programmers carry 
out low-level programming-related activities faster than 
novices. Such activities include identifying syntax errors 
in a single line of code, and assessing  the correctness of 
loops containing less than 10 lines of code. Wiedenbeck 
concluded that the expert programmers had “automated” 
these processes, so that little mental attention was 
required. This automation allowed the experts to 
concentrate on higher-level problem-solving tasks. As a 
consequence of these findings, Wiedenbeck suggested 
that the teaching of novice programmers should “stress 
continuous practice with basic materials” until the 
novices have automated the practice [p. 389]. Therefore, 
perhaps an early emphasis on program comprehension 
and tracing, with the aim of automating basic skills, might 
then free the minds of students to concentrate on 
problem-solving. 
And of course, at some time of their career, many 
programmers will maintain programs written by others, 
where program comprehension skills are vital [Deimel 
and  Naveda,  1990].  
 

6.2 Misconceptions 
Spohrer and Soloway [1986, 1989] collected data about 
bugs in programs written by novices, where the bugs 
could be attributed to misconceptions about programming 
constructs. They concluded that mistakes due to 
misconceptions were not as widespread as was generally 
believed. 
In this study, we also see few comprehension errors due 
to misconceptions. In only one of the twelve multiple 
choice questions did there appear to be a frequent 
misconception about a programming construct. That was  
in Question 6, where students did not completely 
understand the semantics of “return”. Also, in the 
transcript of one student, who scored 5 out of 12, there 
was evidence of confusion between the position in an 
array and the contents of that position.  It is therefore 
possible, nor would it be surprising, that students who 
scored a particularly low mark out of twelve on these 
multiple choice questions may have misconceptions. 
Among the top 75% of students, in all but one question, 
there is little evidence of construct misconceptions. 
However, the multiple choice questions in this study used 
only code fragments performing iterative processes on 
arrays. Students may have misconceptions associated with 
concepts not examined by these multiple choice 
questions. 
 

6.3 Non-Idiomatic Questions 
Recall that Question 2 is, in the terminology of this study, 
non-idiomatic. That is, it does not process the entire 

contents of the two arrays, as some programmers might 
first expect. The performance data shows that strong 
students tend to see that non-idiomatic detail, but weaker 
students do not. To what extent then, are MCQs like 
Question 2 “trick” questions? 
As Perkins et. al (1989) argued, the ability to read what a 
piece of code actually does, rather than what we might 
think on a first quick inspection, is an important 
debugging skill.  If students are forewarned that the 
pieces of code in the MCQs may be non-idiomatic (or 
buggy, depending upon one’s point of view), then we 
regard such questions as legitimate.  A weakness of this 
study is that only students at the “base” institution where 
the questions were written were guaranteed to be so 
forewarned. However, since the data for the base 
institution is broadly consistent with data from the 
satellite institutions, this weakness did not have a major 
impact on the study. 
The authors of this working group acknowledge, 
however, that a weakness of non-idiomatic code is that it 
encourages students to mechanically hand execute code, 
when we would also like them to read with the aim of 
abstracting to schema.  
 

6.4 Meaning and Context 
When teaching novices to write programs, we emphasize 
the importance of using meaningful variable names. They 
are one type of beacon [Brooks, 1983; Wiedenbeck, 
1986] which helps a programmer understand a piece of 
code. There are also rules of programming discourse 
[Soloway and Ehrlich, 1984] that set up expectations in 
the minds of  programmers, as they read code. Beyond the 
program itself, observations by Pennington [1987] 
indicate that programmers also use a “cross-referencing” 
reading strategy, where they relate parts of a program to 
the problem domain. For example, when reading a 
program that tracks engineering wiring specifications, a 
programmer uses their real-world knowledge of wiring.   
The MCQs in this study tend not to contain meaningful 
variable names, other beacons or conventions of 
discourse. Nor do these MCQs relate to a real-world 
domain. Therefore, to some extent, these MCQs are 
artificial problems, removed to some degree from the   
task of reading real programs. However, most of the code 
in these MCQs involve some sort of plausible operation 
on arrays. For example, Question 2 uses code for 
counting the number of common elements in two arrays 
(albeit non-idiomatically).  
While the comprehension of real programs may involve 
higher-level strategies using beacons, rules of discourse, 
and cross-referencing, those skills do not replace the 
ability to systematically trace through code. Detienne and 
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Soloway [1990] found that when higher-level skills fail to 
elucidate program behavior, expert programmers resort to 
other skills, including simulating the program.  
Furthermore, the authors of this paper believe that it may 
be appropriate to first teach systematic tracing as a base 
skill, then allow students to build these higher-level 
comprehension skills upon that base. 
 

6.5 Other Languages  
Of the twelve participating institutions in this working 
group, eleven teach Java as a first language and one 
teaches C++. This restriction to only two languages may 
be an indication of their popularity as first programming 
languages. However, it may also be an indication that 
Java and C++ are particularly difficult to teach as first 
languages. It would be interesting to see this study 
replicated using other programming languages.  We 
suspect, however, that the iterative process on arrays 
studied in this paper are generic to such a degree that 
students will perform similarly irrespective of what 
language they are taught. 
 

6.6 Comparative Data 
Much of the literature that studies novice programmers 
contrasts their performance on a given task with the 
performance of expert programmers. As a follow-up to 
this study, it would be interesting to collect data from 
expert programmers to see how their approach to  
answering these twelve multiple choice questions 
compares with that of the novices studied in this paper. 
 

6.7 Availability of Data  
The working group intends to eventually release portions 
of its data so that others may do their own analysis. 
Information abut data availability can be found at a web 
site [Lister, 2004]. 
 

7. CONCLUSION 
This paper is a report from an ITiCSE 2004 working 
group. It builds on the work of the earlier McCracken 
working group. The McCracken group established that 
many first-year programming students cannot program at 
the conclusion of their introductory courses.  While a 
popular explanation for that inability is that students 
cannot problem-solve, in the strong five-step sense 
defined by the McCracken group, this working group has 
established that many  students lack knowledge and skills 
that are a precursor to problem-solving. These missing 
elements relate more to the ability of students to read 
code than to write it. Many of the students manifested a 

fragile ability to systematically analyze a short piece of 
code.  
This working group does not argue that all students who 
manifest a weakness in problem-solving do so because of 
reading-related factors. We accept that a student who 
scores well on the type of tests used in this study, but who 
cannot write novel code of similar complexity, is most 
likely suffering from a weakness in problem solving.  
This working group merely makes the observation that 
any research project that aims to study problem-solving 
skills in novice programmers must include a mechanism 
to screen for subjects weak in precursor, reading-related 
skills. 
This study assumed that the knowledge and skills that are 
the focus of this study are precursors to problem solving. 
The next logical research step is to examine that 
assumption, by combining the designs of the McCracken 
study and this study, to ask students to both solve tasks 
like those in this study, and also write code of similar 
complexity. 
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Appendix A: The 12 Multiple Choice Questions 
Questions were  given  to students in single column 
format, usually with one complete question per page.  
Here, the indenting of some questions has been altered to 
fit the journal format. Answers for the questions are given 
after the final question. 
 
Question 1 
Consider the following code fragment: 
  
int[] x = {2, 1, 4, 5, 7};  
int limit = 3; 
int i = 0; 
int sum = 0; 
while ( (sum<limit) && (i<x.length)){ 

++i; 
sum += x[i]; 

} 
 
What value is in the variable “i” after this code is 
executed?   
a)   0 
b)   1   
c)   2  
d)   3 

 
Question 2.  
Consider the following code fragment: 

int[] x1 = {1, 2, 4, 7}; 
 int[] x2 = {1, 2, 5, 7}; 
 int i1 = x1.length-1; 
 int i2 = x2.length-1; 
 int count = 0; 
 while ((i1 > 0 ) && (i2 > 0 )) 
 { 
  if ( x1[i1] == x2[i2] ) 
  { 
   ++count; 
   --i1; 
   --i2; 
  } 
  else if (x1[i1] < x2[i2]) 
  { 
   --i2; 
  } 
  else 
  { // x1[i1] > x2[i2] 
   --i1; 
  } 
 } 
After the above while loop finishes, “count” contains 
what value?   
a)   3  
b)   2  
c)   1  
d)   0  
 

Question 3.  
Consider the following code fragment: 
 
int [] x = {1, 2, 3, 3, 3}; 
boolean b[] = new boolean[x.length]; 
 
for ( int i = 0; i < b.length; ++i )  
 b[i] = false; 
  
for ( int i = 0; i < x.length; ++i ) 
 b[ x[i] ] = true; 
  
int count = 0; 
 
for (int i = 0; i < b.length; ++i ) 
{ 
 if ( b[i] == true ) ++count; 
} 
 
After this code is executed , “count” contains: 
a)   1  
b)   2  
c)   3 
d)   4  
e)   5 
 
Question 4.  
Consider the following code fragment: 
 
int[ ] x1 = {0, 1, 2, 3}; 
int[ ] x2 = {1, 2, 2, 3}; 
int i1 = 0; 
int i2 = 0; 
int count = 0; 
while ( (i1 < x1.length) &&  
        (i2 < x2.length)) 
{ 
 if ( x1[i1] == x2[i2] ) 
 { 
  ++count; 
  ++i2; 
 } 
 else if (x1[i1] < x2[i2]) 
 { 
  ++i1; 
 } 
 else 
 { // x1[i1] > x2[i2] 
  ++i2; 
 } 
} 
 
After this code is executed, “count” contains: 
a)   0  
b)   1  
c)   2  
d)   3  
e)   4 
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Question 5. 
Consider the following code fragment: 
 
int[ ] x = {0, 1, 2, 3}; 
int temp; 
int i = 0; 
int j = x.length-1; 
 
while (i < j) 
{ 
 temp = x[i]; 
 x[i] = x[j]; 
 x[j] = 2*temp; 
 i++; 
 j--; 
} 
 
After this code is executed, array “x” contains the values: 
 
a)  {3, 2, 2, 0}  
b)  {0, 1, 2, 3}  
c)  {3, 2, 1, 0} 
d)  {0, 2, 4, 6} 
e)  {6, 4, 2, 0} 
 
 
Question 6.  
The following method “isSorted” should return true if 
the array is sorted in ascending order. Otherwise, the 
method should return false: 
 
public static boolean isSorted(int []x) 
{ 

//missing code goes here 
} 
 
Which of the following is the missing code from the 
method “isSorted” ? 
 
(a) boolean b = true; 

 
for (int i=0 ; i<x.length-1; i++) 
{ 

if ( x[i ] > x[i+1] )  
b = false; 

else  
b = true; 

} 
return b; 

 
 
(b) for (int i=0; i<x.length-1; i++) 

{ 
if (x[i ] > x[i+1] ) 

return false; 
} 
return true; 

 

(c) boolean b = false; 
 

for (int i=0; i<x.length-1; i++) 
{ 

if (x[i] > x[i+1] )  
b = false; 

 } 
return b; 

 
 
(d) boolean b = false; 
 

for (int i=0;i<x.length-1;i++) 
{ 

if (x[i ] > x[i+1] )  
b = true; 

} 
return b; 

 
 
(e) for (int i=0;i<x.length-1;i++) 

{ 
if (x[i ] > x[i+1] ) 

return true; 
 } 

return false; 
 
 
Question 7.  
Consider the following code fragment: 
  
int[] x = {2, 1, 4, 5, 7};  
int limit = 7; 
int i = 0; 
int sum = 0; 
 
while ( (sum<limit) && (i<x.length) ) 
{ 

sum += x[i]; 
++i; 

} 
 
What value is in the variable “i” after this code is 
executed? 
   
a)   0 
b)   1   
c)   2  
d)   3 
e)   4 
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Question 8.  
If any two numbers in an array of integers, not necessarily 
consecutive numbers in the array, are out of order (i.e. the 
number that occurs first in the array is larger than the 
number that occurs second), then that is called an 
inversion. For example, consider an array “x” that 
contains the following six numbers: 
 

4   5   6   2   1   3  
 

There are 10 inversions in that array, as: 
 

x[0]=4   >   x[3]=2 
x[0]=4   >   x[4]=1 
x[0]=4   >   x[5]=3 
x[1]=5   >   x[3]=2 
x[1]=5   >   x[4]=1 
x[1]=5   >   x[5]=3 
x[2]=6   >   x[3]=2 
x[2]=6   >   x[4]=1 
x[2]=6   >   x[5]=3 
x[3]=2   >   x[4]=1 
 

The skeleton code below is intended to count the number 
of inversions in an  array “x”: 

   
int inversionCount = 0; 
 
for ( int i=0 ; i<x.length-1 ; i++ )  
{ 

for  xxxxxx   
{ 

if (  x[i] > x[j] ) 
++inversionCount; 

      } 
} 
 
When the above code finishes, the variable 
“inversionCount” is intended to contain the number of 
inversions in array “x”. Therefore, the “xxxxxx” in the 
above code should be replaced by: 
 
a)   ( int j=0  ; j<x.length  ; j++ ) 
b)   ( int j=0  ; j<x.length-1; j++ ) 
c)   ( int j=i+1; j<x.length  ; j++ ) 
d)   ( int j=i+1; j<x.length-1; j++ ) 
 

Question 9. 
The skeleton code below is intended to copy into an array 
of integers called “array2” any numbers in another integer 
array “array1” that are even numbers. For example, if 
“array1” contained the numbers: 
 

array1:   4  5  6  2  1  3 
 

then after the copying process, “array2” should contain in 
its first three places: 
 

array2:   4  6  2 
 

The following code assumes that “array2” is big enough 
to hold all the even numbers from “array1”: 
         
int a2 = 0; 
  
for ( int a1=0 ; xxx1xxx ; ++a1 ) 
{ 

// if array1[a1] is even 
      if ( array1[a1] % 2 == 0 ) 
     { 
  // array1[a1] is even, 

// so copy it 
xxx2xxx; 
xxx3xxx;        

      } 
} 
 
The missing pieces of code “xxx1xxx”, “xxx2xxx” and 
“xxx3xxx” in the above code should be replaced 
respectively by: 

 
a)    a1<array1.length    

++a2       
array2[a2] = array1[a1]    
 

b)    a1<array1.length   
array2[a2] = array1[a1]    
++a2 
 

c)    a1<=array1.length   
array2[a2] = array1[a1]       
++a2 
 

d)    a1<=array1.length   
++a2        
array2[a2] = array1[a1] 
 

Hint: in all four options above, the second and third 
parts are the same, just reversed. 
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Question 10.  
Consider the following code fragment: 
 
int[] array1 = {2, 4, 1, 3}; 
int[] array2 = {0, 0, 0, 0};             
int a2 = 0; 
 
for (int a1=1; a1<array1.length; ++a1) 
{ 

if ( array1[a1] >= 2 ) 
{ 

array2[a2] = array1[a1]; 
++a2;        

} 
} 
 
After this code is executed, the array “array2” contains 
what values? 
  
a)  {4, 3, 0, 0} 
b)  {4, 1, 3, 0} 
c)  {2, 4, 3, 0}  
d)  {2, 4, 1, 3} 
 
 
Question 11.  
Suppose an array of integers “s” contains zero or more 
different positive integers, in ascending order, followed 
by a  zero.  For example: 

 
int[] s = {2, 4, 6, 8, 0}; 

   or int[] s = {0}; 
 
Consider the following “skeleton” code, where the 
sequences of  “xxxxxx” are substitutes for the correct 
Java code: 
 
   int pos = 0; 
   while ( (xxxxxx) && (xxxxxx) ) 

++pos; 
 
Suppose an integer variable “e” contains a positive 
integer. The purpose of the above code is to find the place 
in “s” occupied by the value stored in “e”. Formally, 
when the above “while” loop terminates, the variable 
“pos” is determined as follows:   

 
1. If the value stored in “e” is also stored in the array, 

then “pos” contains the index of that position.  For 
example, if e=6 and s = {2, 4, 6, 8, 0}, then pos should 
equal 2. 

 
2. If the value stored in “e” is NOT stored in the array, 

but the value in “e” is less than some of the values in 
the array then “pos” contains the index of the lowest 
position in the array where the value is larger than in 

“e”.  For example, if e=7 and s = {2, 4, 6, 8, 0}, then 
pos should equal 3. 

 
3. If the value stored in “e” is larger than any value in “s”, 

then “pos” contains the index of the position containing 
the zero. For example, if e=9 and s = {2, 4, 6, 8, 0}, 
then pos should equal 4. 

 
The correct Boolean condition for the above “while” loop 
is: 
(a)  (pos < e)     &&  (s[pos] != 0)  
(b)  (pos != e)    &&  (s[pos] != 0)  
(c)  (s[pos] < e)  &&  (  pos  != 0)      
(d)  (s[pos] < e)  &&  (s[pos] != 0)    
(e)  (s[pos] != e) &&  (s[pos] != 0) 
 
 
Question 12. 
This question continues on from the previous question. 
Assuming we have found the position in the array “s” 
containing the same value stored in the variable “e”, we 
now wish to write code that deletes that number from the 
array, but retains the ascending order of all remaining 
integers in the array. For example, given: 

 
s = {2, 4, 6, 8, 0}; 
e = 6; 
pos = 2; 

 
The desired outcome is to remove the 6 from “s” to give: 
 

s = {2, 4, 8, 0, 0}; 
 

Consider the following “skeleton” code, where “xxxxxx” 
is a substitute for the correct Java code: 
 

do { 
  ++pos; 
  xxxxxx; 

} while (s[pos] != 0 ); 
 
The correct replacement for “xxxxxx” is: 

 
(a)  s[pos+1] = s[pos]; 
(b)  s[pos]   = s[pos+1]; 
(c)  s[pos]   = s[pos-1]; 
(d)  s[pos-1] = s[pos]; 
(e)     None of the above 
 
 
 
Correct options for the 12  questions 

1 2 3 4 5 6 7 8 9 10 11 12 
c b c e a b d c b a d d 
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Appendix B. Analysis of individual questions

This appendix contains statistical results and analysis for 
each of the MCQs. The analyses for questions 2 and 8, 
found in the body of the text, are not repeated. Questions 
with similar structure are grouped in sections B.1 to B.3. 
B.1 Fixed-code questions with int answers 
Questions 1-4 and 7 all give an array and ask for the 
value of an int variable, which represents either the 
number of times something occurs in the array or the 
index of some position in the array. Theoretically, there is 
a finite set of possible answers – the set of indices for the 
given array, or the range from 0 to the total number of 
elements in the array.  
Consider Question 1, for example. This question involves 
searching through an array, accumulating the sum of the 
array elements in a variable, and recording the index at 
which the sum reaches a certain limit. There are five 
elements in the array, so the possible index values include 
0, 1, 2, 3, and 4. If the index value is incremented at the 
end of the loop, it might also be 5. Not all of these values 
are provided as choices: the options only include 0, 1, 2, 
and 3.  
Student responses to this question are summarized in the 
graph in Figure B1, below. This graph shows that the top 
students (those in the first quartile) did well; over 90% of 
them chose C (the correct answer). Although the second 
and third quartiles don’t do as well, they still have a 
strong preference for the correct answer. The question 
distinguishes between quartiles 1-3 and the weak 
students, who choose the correct answer and choice D 
with approximately equal frequency.  
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Figure B1: Student responses to Question 1 by quartiles. 

Even the students in the fourth quartile know something, 
however: not all choices are equally popular. Choice A is 
much less popular than the rest, even among the students 
in the fourth quartile. The value of choice A is 0, and we 
hypothesize that even weak students can usually see that 
i++ changes the value of i at least once.  
The discussion of Question 2 is in Section 4.1. 

Question 3, another fixed-code question, involves 
manipulating two arrays. In this case, the second array, an 
array of booleans, is used to keep track of the distinct 
values contained in the first (int) array.  Finally, the 
number of distinct values in the int array (each 
corresponding to true in the boolean array) is counted.  
The number of elements in the array is 5, so the possible 
values for the number of distinct elements are 1, 2, 3, 4, 
and 5. These values are all given as choices.  
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Figure B2: Student responses to Question 3 by quartiles. 
Judging by the results, the students had little trouble with 
this one. Once again, the top students do very well, and 
quartiles 2-3 have a strong preference for the correct 
answer. Choice E becomes increasingly popular as we go 
from the top students down to the weak students. Choice 
E, “5,” is the one a student would pick if he or she failed 
to understand the statement 

b[x[i]] = true; 

and simply assumed it was the same as  
 b[i] = true; 
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Figure B3: Student responses to Question 4 by quartiles. 

Question 4, also a fixed-code question, is very similar to 
Question 2. It also involves comparing two arrays, 
looking for matching elements. Again, each array 
contains four elements. 
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There are three differences between Questions 2 and 4:  
1. Question 4 starts at position 0 and increments the array 

index; Question 2 starts at the final position of the 
array and decrements the index. 

2. Question 4 examines all positions in the array; 
Question 2 examines all but one. 

3. When Question 4 finds a matching pair, it changes only 
one of the indices; Question 2 changes both. Thus, for 
example, suppose we have two arrays: {6, 0} and {6, 
6}. The code in Question 4 finds two matches; the 
Question-2 code only finds one. 

Because of these differences, the possible answers here 
range from 0 (e.g. {1, 2, 3, 4} and {5, 6, 7, 8}) to 4 (e.g. 
{2, 3, 4, 5} and {2, 2, 2, 2}.) 
The choices given for this question are related to the most 
likely student misconceptions. The correct answer is 4 
(choice E). If you think this code is counting duplicates in 
the same way as Question 2, you would get the answer 3 
(which is choice D). If you see that the code is counting 
slightly differently, but think that it’s still ignoring the 
first element of each array, you would also get 3. If you 
make both mistakes, you would get  2 (choice C). 
In the graph for Question 4, we see the familiar pattern: 
the top students do very well, quartiles 2-3 do less well 
but still have a strong preference for the correct answer, 
and quartile 4 does even less well and does not have a 
preference for the correct answer. 
We also see, however, that all four quartiles distinguish 
among the distracters, with choice D as the most popular, 
followed by choice C, consistent with the fact that the 
likely misconceptions lead to those answers. Choices A 
and B, which do not correspond to any of the likely 
misconceptions, are the least popular. And once again, 0 
(here, choice A) is a very unpopular choice. 
Here is the graph for question 7: 
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Figure B4: Student responses to Question 7 by quartiles. 

Question 7 is very similar to Question 1. Both questions 
involve a single array. In both cases, the code searches 
through the array, accumulating the sum of the array 
elements and recording the index at which the sum 
reaches a certain limit. The array given in Question 1 is 
identical to the array given in Question 7, and in both 
cases, the code starts at position 0 of the array and works 
forward. In both cases, since the array has five elements, 
the possible values of the array index are 0, 1, 2, 3, and 4 
(and 5, if the array index is incremented after being used).  
There are three differences between the questions: 

1. The value of the limit (3 for question 1, and 7 for 
question 7). 

2. The order of the steps inside the while loop. In 
Question 1, the index is incremented first, then 
the element is added to the sum; in Question 7, 
the element is added first, and then the index is 
incremented. 

3. the choices for question 7 include 4 (choice E), 
as well as 0, 1, 2, and 3. 

Once again, the top students do very well, and the 
students in quartiles 2-3 do less well but have a strong 
preference for the correct answer. Here the students in 
quartile 4 actually have a slight preference for the correct 
choice as well. There are relatively few errors, and 
transcripts indicate that some of those were due to a 
tracing error, rather than a lack of understanding.  
In summary, all these questions are similar: they all help 
us discriminate between the top three quartiles, on the one 
hand, and the weakest students on the other. Their trace-
line graphs look similar, they are all easy questions for 
the top students, and in each case the fourth quartile 
students are the only ones who do not have a strong 
preference for the correct answer. Sometimes, as in 
Question 2, we can see evidence that students are 
assuming the code fits idioms they know (such as 
processing arrays starting from 0). And 0 always seems to 
be a bad distracter. 
 

B.2 Fixed-code questions with array answers 
Questions 5 and 10 are also fixed-code questions, and 
they also give an array and some code that processes the 
array. Instead of an int value, however, they ask for the 
resulting array. 
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Here is the graph for Question 5: 
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Figure B5: Student responses to Question 5 by quartiles. 
The code for Question 5 takes one array and reverses the 
order of the elements in the array, except for one thing: 
the elements that were in the first half of the array are 
doubled before being moved to their new positions in the 
second half of the array. Thus, array {1, 3, 5, 7} would 
become {7, 5, 6, 2}. 
The choices are related to possible student 
misconceptions. They include: 

o The original array 
o The array you would get if you reversed the 

original array, but didn’t double any of its 
elements 

o The array you would get if you reversed the 
original array and doubled all of its elements 

o The array you would get if you doubled all of the 
array elements, but didn’t reverse it. The correct 
answer. 

This question discriminates even more clearly than the 
earlier questions between the top three quartiles and the 
weakest students. It was one of the easiest questions for 
the top three quartiles, as the graph shows: the trace line 
for the correct answer has a similar shape, but it is very 
high, particularly for quartiles 2 and 3. Over 95% of the 
students in the second quartile chose the correct answer. 
Even in the third quartile, more than 70% of the students 
chose the correct answer.  
The first and second quartiles show no clear preference 
for any of the distracters; the third quartile very slightly 
prefers choice D (doubling the whole array without 
reversing it), and the fourth quartile prefers choice D even 
to the correct answer. Student notes on the exams indicate 
that even weak students can see that something is being 
multiplied by two, but they find the logic of the swapped 
elements harder to follow. 
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Figure B6: Student responses to Question 10, by 

quartiles. 

Question 10 is the last of the fixed-code questions. It 
involves filtering an array: taking all numbers greater than 
or equal to two and copying them into a second array. 
The first element in the array is ignored, however. 
The choices, again, are related to possible student 
misconceptions. They include: 

o the array with all the elements from the original 
array that are greater than or equal to two (what 
you would get if you filtered, but didn’t notice 
that the copying started with position 1) 

o the array you would get if you started with 
position 1, but didn’t filter 

o the array you would get if you didn’t filter and 
didn’t notice that the copying started with 
position 1 (i.e., the original array) 

o the correct answer. 
Overall, 70% of the students solved this question 
correctly, and the students in Quartile 1 overwhelmingly 
preferred the correct answer (A). Students in Quartiles 2 
and 3 also strongly preferred the correct answer. The 
weak students, on the other hand, evidently guessed: they 
chose all answers with equal frequency.  
All but the bottom quartile noticed something amiss: 
choice D is the one that contains both of the two possible 
errors, and, as shown in Figure 10 it is very unpopular 
with all of Quartiles 1-3. In Quartiles 2-3, Choice C (the 
answer you get if you assume array processing includes 
the whole array) is somewhat more popular than choice B 
(the one you get if you notice that the first element of the 
array is being ignored, but you don’t filter the array).   
The students in the fourth quartile appear to be choosing 
almost at random, perhaps because they have no idioms to 
rely on. 
In summary, the fixed-code questions all have a lot in 
common. Their trace-line graphs are very similar: the top 
students do very well, the students in the second and third 
quartiles do less well, but still strongly prefer the correct 
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answer, and the students in the fourth quartile do not have 
a preference for the correct answer. We can sometimes 
draw conclusions based on which distracters the students 
choose. This evidence tends to support the idea that many 
students are influenced by standard idioms, such as 
looping through an array from position 0 to position 
length-1, but are not yet comfortable enough with those 
idioms to know when not to use them. 
 

B.3 Skeleton-code questions 
By this point, the reader might wonder if trace-line graphs 
always look the same. Two of the skeleton-code questions 
were relatively easy for the students, and their graphs are 
similar to the graphs for the fixed-code questions. The 
other three questions were consistently the most difficult, 
across quartiles and across institutions, and their graphs 
look quite different.  Question 8, a difficult skeleton-code 
question, was presented in section 4, so is not presented 
here. 
Let’s begin with an easier question. Here’s the graph for 
Question 9: 
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Figure B7: Student responses to Question 9 by quartiles. 
 

In this question, students are told that a given code 
fragment is intended to copy the even numbers contained 
in one array into a second array; they are asked to fill in 
three blanks in the code.  
The choices are clearly parallel, and if the layout is not 
enough to make this clear to the students, a hint is given. 
The students’ attention is focused on two points: 

1. Should the loop stop processing the array when 
the index is equal to the length of the array, or 
when it’s equal to the length minus 1? 

2. Should the array index of the second array be 
incremented at the beginning of the loop body or 
at the end? 

The correct answer to both of these questions was the 
idiomatic one: increment at the end of the loop body, and 
stop processing at position length-1. 

The choices included: 
o Stop processing at the right place, but increment 

at the beginning of the loop body 
o Stop processing in the right place and increment 

at the end of the loop body (the correct answer) 
o Stop processing in the wrong place and 

increment at the beginning of the loop body (two 
errors combined) 

o Stop processing in the wrong place but 
increment at the end of the loop body 

This question was the easiest of the skeleton-code 
questions, and one of the easiest questions overall. Of the 
top quartile, 98% got the question right. What is more 
striking is that even the weak students could differentiate 
between answers where the loop counter was incremented 
in the beginning (B and C) and those where it was done at 
the end (A and D), favoring the correct order of 
statements. Given the number of students who guessed in 
some of the questions, this is even more noticeable. 
The students’ good performance on this question may be 
because the idiomatic, predictable answer is in fact the 
correct one. It may be because the answers are clearly 
distinguished from each other, and the students’ attention 
is thus drawn to the key points. It is also possible that 
Question 10 had an effect. An alert student might find the 
answer to Question 9 in Question 10. Question 10 also 
involves filtering one array into another, but it is a fixed-
code question, so the code is provided. On the other hand, 
it’s arguable that a student who was alert enough to spot 
the similarity between these two questions would have 
got them right in any event. 
For a very different question, here’s the graph for 
Question 6: 
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Figure B8: Student responses to Question 6, by quartiles. 
This question asks the student to select the method body 
for a boolean method that takes an array of ints and 
returns true if the array is sorted in ascending order.  
The most obvious difference about this graph is where the 
lines cross: the upper line for the correct answer (choice 
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B) crosses the trace line for one of the distracters between 
the second and third quartiles. The line also starts quite 
low: less than 80% of the students even in the first 
quartile chose the correct answer. 
This question discriminates between the top and bottom 
students: quartiles 1 and 2 on the one hand, and quartiles 
3 and 4 on the other. In addition, it reveals 
misconceptions that are shared even by some of the top 
students. 
Students at all levels easily ruled out alternative C, which 
always returns false. They also ruled out alternatives D 
and E, which return true when the array is not sorted. Top 
students, however, chose the correct answer (B) almost 
75% of the time, students in the second quartile chose 
distracter A almost as often as the correct answer, and 
students in the third and fourth quartiles preferred 
distracter A to the correct answer.  
What explains the popularity of distracter A in this 
question? Even the top students chose distracter A more 
than 20% of the time. In fact, this was the most effective 
distracter on any question for the top students. 
The transcripts suggest that students were misled due to 
preconceptions about the meaning of a return statement 
inside a loop. Choice B, the correct answer, has a return 
statement inside a loop; choice A does not. Students who 
chose distracter A were not always satisfied with it, but 
felt that it was “less bad” than the correct answer, B. 
We found three interpretations: 

1. When the return statement is encountered, it 
returns a value immediately and exits (the 
correct interpretation); 

2. A return statement inside a loop returns 
multiple values; 

3. A return statement inside a loop sets a return 
value each time through the loop and returns its 
final value. 

The second interpretation was indicated by comments 
such as “It has to return only one true or false, this whole 
thing, in the end. Not many.” The third interpretation was 
indicated by comments such as “you return false and later 
you return true, which is not right,” and “always returns 
true,” and “If that returns false it’s still going to return 
true every time.” Some students commented on the lack 
of a flag: “no identifiers,” “maybe B is wrong because 
you are not initializing any variables.” 
The problems with return statements inside a loop also 
explain the difference between distracters D and E. As 
shown on the graph, D is preferred to E, even though they 
both have the same logical flaw (they both return true 
when the array is not sorted). D sets a flag, however, and 
E has a return statement inside a loop. 

Finally, consider Questions 11 and 12. These questions 
are both related to the same topic, and Question 12 
continues on from Question 11. Here’s the graph for 
Question 11: 
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Figure B9: Student responses to Question 11, by 

quartiles. 
As can be seen from the graph, this was an easier 
question for the students. It involves an array of integers, 
sorted in ascending order, with a “0” as the final element 
as a flag to indicate the end of the array. The code is 
designed to locate the position in this array where a 
particular new element should be inserted. Students were 
asked to choose the correct loop condition to fill in a 
blank in the code. 
The choices focused on two things: 

1. the difference between an index (pos) into an 
array and the element at that index (s[pos]). 

2. the logic of the search. We can’t stop searching 
until we find an element that’s greater than the 
desired value. The correct condition is while 
(s[pos]<e),  not while (s[pos] != 
e). 

 
Like the fixed-code questions, this one discriminates 
between the top three quartiles, on the one hand, and the 
weakest students, on the other. The top students did very 
well. They rarely chose any of the distracters, although 
when they did, they had a slight preference for distracter 
E. Quartiles 2 and 3 did less well than quartile 1, but they 
still had a strong preference for the correct answer (D). 
When they did choose a wrong answer, they preferred 
distracter E to any of the others. In other words, they had 
no problem distinguishing between pos and s[pos] 
(indicated by their rejection of distracters A-C), but they 
were sometimes wrong about the search logic (indicated 
by the choice of distracter E). 
The fourth-quartile students are much more likely to 
choose distracters A-C than students in quartiles 1-3, and 
less likely to choose the correct answer. In other words, 
they are more likely to be confused about the difference 
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between pos and s[pos] than students in the other 
quartiles. 
Finally, here’s the trace-line graph for Question 12: 
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Figure B10: Student responses to Question 12, by 

quartiles. 

This was the hardest question, and its graph is the most 
complex. Question 11 (like the fixed-code questions) 
separates the weak students from the rest; Question 12 
separates the top from the mediocre students.  
This question involves a single array of ints sorted in 
ascending order with a 0 following the last element of the 
array, as in Question 11. The code to be written here is 
supposed to delete an element in the given position from 
the array and shift the rest of the elements to the left to fill 
in the gap. Thus, if we delete the 7 from array 
{1,3,5,7,9,0}, the result should be {1,3,5,9,0,0}.  
The choices focus on two points: 

1. When the assignment statement x=y is executed, it is 
the value of x that is changed. 

2. Inside the loop, the array index is incremented first. 

Students who are confused about the direction of the 
assignment operator but notice that the index is 
incremented first would choose distracter C. Students 
who have a solid grasp on the assignment operator but 
fail to notice that the array index is incremented first 
would choose distracter B. This is the expected, idiomatic 
code. Distracter A contains both errors. D is the correct 
answer, and E is “none of the above.” This is the only 
question that contained a “none of the above” option. 
Top students chose the correct answer over 70% of the 
time, and when they did not, were equally likely to 
choose distracter B (the idiomatic answer) and distracter 
E (none of the above). They almost never selected A or C. 
In quartiles 2-4, the correct answer is no longer the most 
popular. In quartile 2, it is approximately tied with 
distracters B and E; in quartile 3, distracters B and E are 
more popular than the correct answer, but B (the 
idiomatic answer) is still the most popular); and in the 

fourth quartile, distracter E (none of the above) is the 
most popular choice.  
It appears that most students understand the assignment 
operator, but it’s not unusual for them to assume that the 
index is incremented in the usual place, at the end of the 
loop body.  
This question does not in itself seem much more difficult 
than the others. Some students may have given up 
because they didn’t get Question 11 (although this 
question could probably be answered without reading 
Question 11). Because of the continuation, Question 12 
appears to require more reading than the rest. A number 
of students were misled by the fact that the array index is 
incremented at the beginning of the loop body. Notably, 
this is the only question that contains a “none-of-the-
above” choice, and that may have misled students: the 
very fact that they hadn’t seen that choice before might 
make it more significant. And it might just be that 
students were tired by this point in the test. At least one of 
the transcripts indicated that by this point, the student had 
lost concentration and was simply guessing. 
 


